ADABOOST ' - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

ADABOOST '

Description:

Iterate for t = 1..T: ... are compute every iteration outside the weak learning) Labels Yi Y=(1,...,K) ... 4. update example weights for next iteration D(t 1) ... – PowerPoint PPT presentation

Number of Views:377
Avg rating:3.0/5.0
Slides: 30
Provided by: shumCc
Category:
Tags: adaboost | iterate

less

Transcript and Presenter's Notes

Title: ADABOOST '


1
????? ?????? ?????? ?????? ????????? (?????????
ADABOOST) ?????? ????? ??????.
??????????? ??????, ??????? ????? ?????, ??????
?????????? ???? ???? ???? ?????? ?????? ?????
???? ??? ???
???? ?????? ????' ???? ????? (?????????), ????'
???? ????? (?????????), ????' ???? ??????
(?????????), ??' ???? ???? (???? ????).
2
?????? ?????
  • ???????? ????? ?????.
  • ??? ?' ???????????.
  • ????? ?? ?????? ??????? ????????? AdaBoost
    Weak-Learner , ?-Random Forest .
  • ???? ?? ????? ?????.
  • ?????? ???????? (??? ?????? ???????).
  • ??? ?' - ?????? ????????? ????? ???????.
  • ????????.
  • ???? ??????.
  • ?????? ????????.
  • ??? ?' ??????? ?????? ??????
  • ?????????? ??????.
  • ??????.
  • ??????? ????? ?????.

3
???????? ????? ?????
  • ????????? ???????? ????? ?? ????? ????? ??? ????
    ???? ?????? ?????? ?????? ?? ????? ?????? ????
    ???? ???? ???? ????? ????? ????? ????? ???????.
  • ???? ????? ??? ???? ???? ?????? ?????? ??????
    ???? ?????? ?"? ????? ????? ???????? ??? ?????
    ????? ?? ????? ?????? ???? ???? ?? ???? ???? ????
    ?? ????? ?????? ????? ???????? ????? ????? ????
    ??????? ?? ?????? ??????. ????? ?"? ??????? ?????
    ???? ????? ??? ???? ????? ????? ?????, ???? ????
    ??????? ??? ???? ????? ??? ?????? ????? ??
    ??????.
  • ????? ????? ????? ????? ???? ??????? ????? (????
    ???????) ??? ???? ????? ?????? ???? ???? ?? ???
    ??? ???? ??? ?????? ???? ????? ???? ?

4
??? ?' ???????????
5
?????? ?????? ????????? - ????? ??????? (?????)
  • ???? ????? ????? ?????????? ????? ??????
    ?????????? ???????? ????? ????? ???? ???????
    (?????? ?? ?????? ???????).
  • ?? ????? ????? ???? ?? ????? ????? (???????
    ??????? ???????? ???? ????? ?? ?????? ???????).
    ???? ????????? ??? ????? ?? ?????? ?? ???????
    ????? ????? ?? ???
  • ?????? ??????.
  • ???????? ?????? ???? ???? ???? ?? ??????? (??
    ???? ???? ????? ?????) ????? ????? ???? ?????????
    ????? ??????/?????.

6
????? ?? ????? ??????
7
???????? Boosting
  • ???????? Boosting ???? ???????? ????? ??????
    ????????? ????? ??? ??? ????.
  • ???? ???????? ?-Boosting ???? ????? ??????? ????
    ???? ???? ???????, ???? ?"? ????? ?????????
    ????? ???, ???? ????? ??? ???? ????? ????????
    ????? ???? ???? (Weak-Learning).
  • Boosting ???? ?? ??? ???? ???????? ?????? ????
    ????? ??? ???? ???????? X, ???? ??? ??? ?????? ??
    ????? ?? ????? ?? ??????? ?????. ?????????
    ??????? ?????? ?????? ??????? ?????? ??????? ????
    ???? ????.
  • ????? ???? ??? ?? ??????
    .........
  • ????? ???? ????? ??? ?????? ????? ????? ??.

8
Boosting (cont.)
  • ??????
  • ???? ???????? X ?? M ??????? , XM (x1,y1),,
    (xm,ym)
  • ??????? D, ?????? D 1/M
  • ????? ?????? Y ??????? Y X ? -1,1
  • ???????? ????? ??? Weak Learn ?? ??????? g, l

(x1,y1),(x2,y2)(xm,ym)
Weak Learn
??????? h
errorD(h)PxD(h(x) ¹Y(x))lt1/2-g
????? ???????? ????? l
9
Boosting (cont.)
Weak Learn
(x1,y1),(x2,y2)(xm0,ylm0)
??????? 1h
??? D1
Weak Learn
(x1,y1),(x2,y2)(xm0,ym0)
??????? h2
??? D2
Weak Learn
(x1,y1),(x2,y2)(xm0,ym0)
??????? hk
??? Dk
??????? ????? hMF(h1,h2,,hk)
10
Weak Learning Pseudo Code
11
Adaboost Pseudo Code
  • Input
  • N examples SN (x1,y1),, (xN,yN)
  • a weak base learner h h(D,S)
  • Initialize
  • equal example weights Dt 1/N for all n 1..N
  • Iterate for t 1..T
  • train base learner according to weighted example
    set (D(t),S) and obtain hypothesis ht h(D(t),S)
  • compute hypothesis error et , et ?Dt I(Yt ?
    ht)) / ?Dt
  • compute hypothesis weight at , at log ((1 et
    )/et
  • update example weights for next iteration D(t1),
    D(t1) D(t)expat (Yt ? ht )
  • Output final hypothesis as a linear combination
    of ht
  • hFINAL sign ? at ht

12
Weak Learning Pseudo Code
  • Input Train set S, S xi,j (i 1,2M j
    1,2N)
  • Distribution
    (New weights
    (wl)
  • are compute every iteration outside the weak
    learning)
  • Labels Yi Y(1,...,K)
  • A constant T, for instance
  • 1 for t 1 to T do
  • 2 Threshold(t)
  • 3
  • 4
  • 5
  • 6 End for
  • 7 Output

13
???????? Adaboost ?????-???
14
Random Forest Model
  • Combination of Tree predictors i.e. a large
    number of trees is generated to create a Random
    Forest.
  • Each Tree created depends on the value of a
    Random vector .
  • is generated independently using an
    identical distribution for all trees

What is a Random Vector ?
  • Represents a Random Sample chosen from Training
    Data using i.i.d
  • Data Samples are usually selected with
    replacement

15
???? ???? ????????? Random Forest
  • ???? ????? ????? ???? ???? ?????? (??"? ??????
    ???? ???????)
  • ???? ?? ????? ?"? ????? ?????? ??????? ???????
    ???????. ???' ???? ?? ??? ?????? ?? ?????? ???
    ????.

lt 0
1
lt 3-
1-
1
  • ???? ??? ?? ???? ???? ???? ??????.
  • ?? ????? ??? ??? ????? ????? ???? ????? ?????
    ?????, ?????? ??? ?? 10 ????? ?-1, 10- ????? ?-1
    ?- 1- ????? ?- 1- .
  • ?? ????? ??? ?????? ???? ????? ???? ??? ??
    ??????, ???? ??? ?? ???? 1, ?????? ???? ?????.

16
Random Forest Pseudo Code
  • Initially select the number of trees to be
    generated e.g. K.
  • At Step k (1 lt k lt K)
  • A Vector is generated, represents
    Samples (data selected for creating Tree)
  • Construct Tree h(x, )
  • Using any Decision Tree Algorithm
  • Each Tree casts 1 vote for the most popular class
    at X
  • The class at X is predicted by selecting the
    Class with maximum Votes

17
????? ?????
  • 1

18
????? ?????
  • ??? ????? ????? ?? ??? ????? ????? ????? ????????
    ?????? ?? ????? ?? 2 ?????????? Adaboost
    ?-Random Forest. ??????? ?????? ????????? ????
    ??????? ????? ???, ??????? ???? ????? ?????
    ?????? Boosting ???????) ????? ????? ??? ??
    (Adaboosts .
  • ?????? ?? ???????? Random Forest ????? ??? ????
    ???????? Adaboost ???? ???????? ??? ?????? ????
    ?????? ?????? (????? ????? ?????? ????) ??? ?????
    ??????.

19
????
  • ????? ???? ?? ????? ???? ????? ????? ??? ?????
    ?"? Drucker (1999) ??? ????? ????????? ??? ?????
    C4.5 ????? ???. Drucker ????? ?? ????? ??????
    ??? ?? ??? ????? ???? (????? ?? ??? ???? ?????? ?
    SVMs ?????).
  • ???? ????? ?? ?? ????? ??? ?? ???? ??????
    ???? ???? ????? ?????? ?? ???? ???? ?? ???
    ??????.
  • ?????? ???? ?????? ???? ????? satimage ?? ????
    ??? "?? ????? C4.5" ????? ???.

20
(No Transcript)
21
Adaboost with Random Forest as Weak Learner
  • ???????? Adaboost ??? ????? ?"? Schapire ??
    ?????, ??? ????? ????? ?- Weak Learner "??????"
    ????? ??????? ???? ????? ??? ????? ??? ???? ?
    Random Forest, ??? ???? ???????? ?????, ????
    ????? ??????? h ???? ?????? ?????? ??? ?????
    ????????? ?????? ??????? ????? ?? ????? ??????
    ????? ?????? ????? ?????? ????.
  • ????????? ???? ???? ???? ?????? ?? ?????? ?????,
    ?????? ???? ???? ????? ??? ?????.
  • ????????? ???? ???? ???? ?????? ???????? (??????
    ???????) ?? ????????.

22
Adaboost with Random Forest as Weak Learner
Pseudo Code
  • Input
  • N examples SN (x1,y1),, (xN,yN)
  • a weak base learner h h(D,S)
  • Initialize
  • equal example weights Dt 1/N for all n 1..N
  • Iterate for t 1..T
  • 1. weak learner ht Learn( S dt ) call Random
    Forest
  • Initially select the number K of trees to be
    generated
  • For k 1 to K
  • A Vector is generated.
  • Construct Tree h(x, ) Using
    any Decision Tree Algorithm.
  • Each Tree casts 1 vote for the most popular
    class at X , The class at X is predicted by
    selecting the Class with maximum Votes
  • Return a hypothesis ht (Training set)
  • end For
  • 2. compute hypothesis error et
  • 3. compute hypothesis weight at
  • 4. update example weights for next iteration
    D(t1)
  • Output final hypothesis as a linear combination
    of ht

23
?????? ???????? 1 (satimage)
24
?????? ???????? 2 (satimage)
25
??? ?' ?????? ????????? ????? ???????
26
??????? ????? ?????? ???????(???? ????? ?????
??????? ???????? -????' ???? ??????)
  • ???? ?????? ??????
  • ????? ????? ?? ????.
  • ?????? ??????? ??????? ???? ????.
  • ?????.
  • ???? ????? ??????
  • ????? ????? ?? ????? ??????? ??? ????? ??? ?????
    ????? ????????.
  • ????? ????
  • ??????? ??? ??? ???? ??????
  • ?????? ?????, ?????? ?????
  • ????? ???? congestion ????? ??????? (rush hour)
  • ????? ??????? ???????? ?????? ??????? ???????
  • ?????? ------- ????? ??????
  • ????? ------- ???? ??????, ????? ??????, ?????
    (?????) ??????
  • ????? ------- ?????????, ????? ??????
  • ?????? ------ ?????? ?????, ????? ???
  • ?????? ------ ????? ??????
  • ??????? ??????? ?????? ???????
  • ???? 2 ??????? ???? ???? ??????.

27
??? ????? (?-? ??????)
  • ???? ?? ????? ?????? ?????? ????? ???? ?? ????
    ?????? ????? ????? ?????? ?????.
  • ????? ????? ?? ??????? ??????? ???? ??? ?????
    ??????? ?????? ???? ????? ????? ????.
  • ????? ????? ??????? ???? 78,000 ?????? ???
    ????
  • ??? ???? ???? 2010, ??? ?- 50 ?????? ????
    ???????.

28
????? ?????? ????? ????
  • ????? ?????? ?? 4 ???? ????? ?"? ????? ?-?.
  • ??? ?????? (???? ????????) ???? ?"? ???? ???? ??
    ???? ?? ¼ ??? (???? ?????? ???? ??? ????).
  • ?????? ?????? ???? ???? ????? ?????.

????? ????? ????? ????
29
???? ??????
  • ???? ????? ???? ?? ??????? ????? ???? ????
    ??????? ??
  • ¼ ??? TIME LINK NDET VOLU OCCU SPEE
  • 0000 10 1 292
    5 40
  • ????
  • TIME ??? ??????.
  • LINK - ???? ????? ?? ????? ??????.
  • NDET - ???? ?????? ????? ?? ????? ??????.
  • VOLU - ???? ?????? ???? ?????? ????? ?"? ?????
    ????.
  • OCCU - ??? ?? ?????.
  • SPEE - ?????? ??????.

30
????? ???????? ?????? ?????
  • ????? ????????? ?????? ????? ???? ??????? ?????
    ????, ??"? ????? ???????? ????? ?? ????? ????,
    ????? ??? ?? ??? ?????? ???? ???? ???????
    ???????? ???? ???? ????? ?? ????? ?????.
  • ?????? ????? ????? ?? ???????, ??"? ?? ???? ?????
    ?? ?????? ?????? ????? ?????? ????? ??? ???????
    ??????? ?? ???? ?? ??-????.
  • (????? ????? ??? ?????? ????? "????" ??????
    ????? ?? ???? ????? ????? ?????)

Demo
31
??? ?' ??????? ?????? ??????
32
?????????? ??????
  • ????? ????? (Preprocessing) ?? ????? ??????
    ???? ????? ?????? (train file) ??????? (test
    file) ???? ??????? ???????.
  • ????? ?? ????? ?????? ?"? ????????? (?????? ???
    ??? ?????? ??????).
  • ????? ?? ??????? ?????? ?"? ?????? ?? ???????.

??????? ????? ????? (??????? ?????)
????? ??? ????? ?????
????? ?????? ??????? ??????
????? ????? ????? ?"? ???????? ??????
????? ???? ????? ???? ???
33
??????
  • ??????????? ?????? ?"? ?????? ?? ???????? ????
    Adaboost ???
  • ????? ????? ???Random Forest ???? ?? ???? ????
    ???? ????
  • ???? ???? ??? ??? ?? ??????,C4.5 ?????? ????
    ???????
  • ??????? ??????? ?? ???????? ???????? ????? (?????
    ?? ???? ??????
  • ?? ????? 100 ?? ????).
  • ?????? ????????? ??? ???? ??????? ???? ?????
    ????? ????
  • ????? ?????? ???? ??????. ????? ????? ???? ???
    ???? ?????? ??
  • ??? ????? ?? ????? ?????? ??????? ?????. ?????
    ???? ?????? ?????
  • ????? ???? ??? (??? ???? ?????? ???? ??????) ????
    ????? ?????
  • ????? ?? ???? ?????? ??"? ?? ?????? ?? ??????
    ??????. ??????
  • ?????? ?????? ????? ????? ??-?? ????? ??????
    ?????? ??????
  • ?????? ????? ?? ?????.

34
??????? ????? ????
  • ????? ????? ????? ???????? (????????? ADABOOST )
    ??????? ????? ??????? ????? ??? ???? ?????? ????
    ?????? ??????, ?? ???? ?????? Boosting ??????
    (???? ??????).
  • ???? ????? ???????? ?? ??? (?-?) ?"? ?????
    ???????? ?????? ????? ???? VISSIM, MITSIM ????.
  • ????? ????????? ?????? ????? ????? ????? ??????
    ??????? ?????? ???? ?????? ?? ????? ?-? ?? ???
    ????? ?????? ?? ????? ?????? ????.
  • ????? ?? ?????? ?????? ????????? ?? ????? ??????
    ?? ?-? ??????? ????? ????????? ????? ??????.
  • ??? ?? ?????? ????? ???? ?????? ??????? ??????
    ????? ????????.
Write a Comment
User Comments (0)
About PowerShow.com