Title: Example 1.11: Ciphertext obtained from a Substitution Cipher
1Example 1.11 Ciphertext obtained from a
Substitution Cipher
- YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
- NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
- NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
- XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
2Table 1.3 Frequency of Occurrence of 26
Ciphertext Letters
3Guess Ze, ZW ed, R n
- ------end---------e----ned---e------------
- YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
- --------e----e---------n--d---en----e----e
- NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
- -e---n------n------ed---e---e--ne-nd-e-e--
- NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
- -ed-----n-----------e----ed-------d---e--n
- XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
4Guess Nh, Ca
- ------end-----a---e-a--nedh--e------a-----
- YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
- h-------ea---e-a---a---nhad-a-en--a-e-h--e
- NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
- he-a-n------n------ed---e---e--neandhe-e--
- NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
- -ed-a---nh---ha---a-e----ed-----a-d--he--n
- XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
5Guess Mi
- -----iend-----a-i-e-a-inedhi-e------a---i-
- YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
- h-----i-ea-i-e-a---a-i-nhad-a-en--a-e-hi-e
- NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
- he-a-n-----in-i----ed---e---e-ineandhe-e--
- NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
- -ed-a--inhi--hai--a-e-i--ed-----a-d--he--n
- XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
6Guess Yo, Ds, Fr, Hc, Jt
- o-r-riend-ro--arise-a-inedhise--t---ass-it
- YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
- hs-r-riseasi-e-a-orationhadta-en--ace-hi-e
- NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
- he-asnt-oo-in-i-o-redso-e-ore-ineandhesett
- NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
- -ed-ac-inhischair-aceti-ted--to-ardsthes-n
- XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
7Subsitution Cipher Plaintext
- Our friend from Paris examined his empty glass
with surprise, as if evaporation had taken place
while he wasnt looking. I poured some more wine
and he settled back in his chair, face tilted up
towards the sun
8Example 1.11 Ciphertext obtained from a Vigenere
Cipher
- CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW
- RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK
- LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX
- VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR
- ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT
- AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI
- PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP
- WQAIIWXNRMGWOIIFKEE
9Index of Coincidence
- m1 0.045
- m2 0.046, 0.041
- CREOHART
- HEVAMEAB
- m3 0.043, 0.050, 0.047
- CEOMRBX
- HEAAAIX
- RVHETAW
- m4 0.042, 0.039, 0.046, 0.040
- CEHRIW
- HVMAAT
- ROATXN
- EAEBXX
- m5 0.063, 0.068, 0.069, 0.061, 0.072
- CVABW
- HOEIT
- RARAN
- EHAXX
- EMTXB
10Table 1.4 Values of Mg
11Vigenere Cipher Plaintext
- The almond tree was in tentative blossom. The
days were longer, often ending with magnificent
evenings of corrugated pink skies. The hunting
season was over, with hounds and guns put away
for six months. The vineyards were busy again as
the well-organized farmers treated their vines
and the more lackadaisical neighbors hurried to
do the pruning they should have done in November.
12LFSR Stream Cipher
- Recall
- ciphertext element yi (xi zi) mod 2, where
- xi corresponding plaintext element
- zi corresponding keystream element
- keystream produced from (z1, , zm) by
- zmi mod 2 for constants c0,
, cm-1 - For n 2m, there are m linear equations in m
unknowns
13Cryptanalysis of LFSR Stream Cipher
Plaintext x1 x2 xn Ciphertext y1 y2 yn zmi
Sj0 to m-1 cj zij
(zm1, zm2, , z2m) (c0, c1, , cm-1)
-1
(c0, c1, , cm-1) (zm1, zm2, , z2m)
14 LFSR Stream Cipher Example
- Ciphertext 011001111111000
- Plaintext 101101011110010
- So keystream is 110100100001010
- Suppose Oscar knows m5
(0,1,0,0,0) (c0, c1, , cm-1)
15 LFSR Example Continued
Then (c0, c1, , c4) (0, 1, 0, 0, 0)
(1,0,0,1,0)
- So the recurrence used to generate the keystream
is zi5 (zi zi3 mod 2)
16Information Theory
- Probability a given plaintext x was sent p(Xx)
- Sall possible plaintexts x(p(Xx)) 1
- Probability a given key k was used p(Kk)
- Sall possible keys k(p(Kk)) 1
- Probability a given ciphertext y was received
p(Yy) - For each possible y, p(Yy) S(p(Kk)p(XdK(y)))
- for all keys k such that y is a ciphertext from
key k - Probability x was sent, assuming we know y was
received p(XxYy) or p(xy) - Perfect secrecy p(xy) p(Xx)
- intercepting ciphertext gives cryptanalyst no
additional information.
17Perfect Secrecy (see section 2.3) - example for
Shift Cipher
- 31-character ciphertext from a shift cipher
- y LZWJWAKFGGLZWJDSFYMSYWTMLXJWFUZ
- Number of possible keys lt number of possible
English sentences of length 31 ? perfect secrecy
not achieved. - Just try all 26 keys. Only one (K18) produces a
meaningful message - y LZWJWAKFGGLZWJDSFYMSYWTMLXJWFUZ
- x Thereisnootherlanguagebutfrench