Example 1.11: Ciphertext obtained from a Substitution Cipher - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Example 1.11: Ciphertext obtained from a Substitution Cipher

Description:

COSC 4P03 Week 8. 1. Example 1.11: Ciphertext obtained from a ... The days were longer, often ending with magnificent evenings of corrugated pink skies. ... – PowerPoint PPT presentation

Number of Views:439
Avg rating:3.0/5.0
Slides: 18
Provided by: houg5
Category:

less

Transcript and Presenter's Notes

Title: Example 1.11: Ciphertext obtained from a Substitution Cipher


1
Example 1.11 Ciphertext obtained from a
Substitution Cipher
  • YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
  • NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
  • NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
  • XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

2
Table 1.3 Frequency of Occurrence of 26
Ciphertext Letters
3
Guess Ze, ZW ed, R n
  • ------end---------e----ned---e------------
  • YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
  • --------e----e---------n--d---en----e----e
  • NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
  • -e---n------n------ed---e---e--ne-nd-e-e--
  • NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
  • -ed-----n-----------e----ed-------d---e--n
  • XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

4
Guess Nh, Ca
  • ------end-----a---e-a--nedh--e------a-----
  • YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
  • h-------ea---e-a---a---nhad-a-en--a-e-h--e
  • NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
  • he-a-n------n------ed---e---e--neandhe-e--
  • NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
  • -ed-a---nh---ha---a-e----ed-----a-d--he--n
  • XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

5
Guess Mi
  • -----iend-----a-i-e-a-inedhi-e------a---i-
  • YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
  • h-----i-ea-i-e-a---a-i-nhad-a-en--a-e-hi-e
  • NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
  • he-a-n-----in-i----ed---e---e-ineandhe-e--
  • NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
  • -ed-a--inhi--hai--a-e-i--ed-----a-d--he--n
  • XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

6
Guess Yo, Ds, Fr, Hc, Jt
  • o-r-riend-ro--arise-a-inedhise--t---ass-it
  • YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
  • hs-r-riseasi-e-a-orationhadta-en--ace-hi-e
  • NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
  • he-asnt-oo-in-i-o-redso-e-ore-ineandhesett
  • NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
  • -ed-ac-inhischair-aceti-ted--to-ardsthes-n
  • XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

7
Subsitution Cipher Plaintext
  • Our friend from Paris examined his empty glass
    with surprise, as if evaporation had taken place
    while he wasnt looking. I poured some more wine
    and he settled back in his chair, face tilted up
    towards the sun

8
Example 1.11 Ciphertext obtained from a Vigenere
Cipher
  • CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW
  • RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK
  • LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX
  • VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR
  • ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT
  • AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI
  • PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP
  • WQAIIWXNRMGWOIIFKEE

9
Index of Coincidence
  • m1 0.045
  • m2 0.046, 0.041
  • CREOHART
  • HEVAMEAB
  • m3 0.043, 0.050, 0.047
  • CEOMRBX
  • HEAAAIX
  • RVHETAW
  • m4 0.042, 0.039, 0.046, 0.040
  • CEHRIW
  • HVMAAT
  • ROATXN
  • EAEBXX
  • m5 0.063, 0.068, 0.069, 0.061, 0.072
  • CVABW
  • HOEIT
  • RARAN
  • EHAXX
  • EMTXB

10
Table 1.4 Values of Mg
11
Vigenere Cipher Plaintext
  • The almond tree was in tentative blossom. The
    days were longer, often ending with magnificent
    evenings of corrugated pink skies. The hunting
    season was over, with hounds and guns put away
    for six months. The vineyards were busy again as
    the well-organized farmers treated their vines
    and the more lackadaisical neighbors hurried to
    do the pruning they should have done in November.

12
LFSR Stream Cipher
  • Recall
  • ciphertext element yi (xi zi) mod 2, where
  • xi corresponding plaintext element
  • zi corresponding keystream element
  • keystream produced from (z1, , zm) by
  • zmi mod 2 for constants c0,
    , cm-1
  • For n 2m, there are m linear equations in m
    unknowns

13
Cryptanalysis of LFSR Stream Cipher
Plaintext x1 x2 xn Ciphertext y1 y2 yn zmi
Sj0 to m-1 cj zij
(zm1, zm2, , z2m) (c0, c1, , cm-1)
-1
(c0, c1, , cm-1) (zm1, zm2, , z2m)
14
LFSR Stream Cipher Example
  • Ciphertext 011001111111000
  • Plaintext 101101011110010
  • So keystream is 110100100001010
  • Suppose Oscar knows m5

(0,1,0,0,0) (c0, c1, , cm-1)
15
LFSR Example Continued
Then (c0, c1, , c4) (0, 1, 0, 0, 0)
(1,0,0,1,0)
  • So the recurrence used to generate the keystream
    is zi5 (zi zi3 mod 2)

16
Information Theory
  • Probability a given plaintext x was sent p(Xx)
  • Sall possible plaintexts x(p(Xx)) 1
  • Probability a given key k was used p(Kk)
  • Sall possible keys k(p(Kk)) 1
  • Probability a given ciphertext y was received
    p(Yy)
  • For each possible y, p(Yy) S(p(Kk)p(XdK(y)))
  • for all keys k such that y is a ciphertext from
    key k
  • Probability x was sent, assuming we know y was
    received p(XxYy) or p(xy)
  • Perfect secrecy p(xy) p(Xx)
  • intercepting ciphertext gives cryptanalyst no
    additional information.

17
Perfect Secrecy (see section 2.3) - example for
Shift Cipher
  • 31-character ciphertext from a shift cipher
  • y LZWJWAKFGGLZWJDSFYMSYWTMLXJWFUZ
  • Number of possible keys lt number of possible
    English sentences of length 31 ? perfect secrecy
    not achieved.
  • Just try all 26 keys. Only one (K18) produces a
    meaningful message
  • y LZWJWAKFGGLZWJDSFYMSYWTMLXJWFUZ
  • x Thereisnootherlanguagebutfrench
Write a Comment
User Comments (0)
About PowerShow.com