Title: ETISEO
1ETISEO
- François BREMOND
- ORION Team, INRIA Sophia Antipolis, France
2Fair Evaluation
- Unbiased and transparent evaluation protocol
- Large participation
- Meaningful evaluation
3Tasks evaluated
GT Metrics are designed to evaluate tasks all
along the video processing chain Task 1
Detection of physical objects, Task 2
Localisation of physical objects, Task 3
Classification of physical objects, Task 4
Tracking of physical objects, Task 5 Event
recognition.
4Matching Computation
- To evaluate the matching between a candidate
result and a reference data, we may use following
distances - D1-The Dice coefficient Twice the shared,
divided by the sum of both intervals
2card(RD?C) / (card(RD) card(C)). - D2-The overlapping card(RD?C) / card(RD).
- D3-Bertozzi and al. metric (card(RD?C))2 /
(card(RD) card(C)). - D4-The maximum deviation of the candidate object
or target according to the shared frame span Max
card(C\RD) / card(C), card(RD\C) / card(RD) .
RD
C
5metrics (1)
T1- DETECTION OF PHYSICAL OBJECTS OF
INTEREST C1.1 Number of physical objects C1.2
Number of physical objects using their bounding
box
- T2- LOCALISATION OF PHYSICAL OBJECTS OF INTEREST
- C2.1 Physical objects area (pixel comparison
based on BB) - C2.2 Physical object area fragmentation
(splitting) - C2.3 Physical object area integration (merge)
- C2.4 Physical objects localisation
- 2D and 3D
- Centroïd or bottom centre point of BB
6metrics (2)
- T3- TRACKING OF PHYSICAL OBJECTS OF INTEREST
- C3.1 Frame-To-Frame Tracking Link between two
frames - C3.2 Number of object being tracked during time
- C3.3 Detection time evaluation
- C3.4 Physical object ID fragmentation
- C3.5 Physical object ID confusion criterion
- C3.6 Physical object 2D trajectory
- C3.7 Physical object 3D trajectory
T4- CLASSIFICATION OF PHYSICAL OBJECTS OF
INTEREST C4.1 Object Type over the
sequence C4.2 Object classification per
type C4.3 Time Percentage Good
Classification card RD?C, Type(C) Type(RD)
/ card(RD?C)
T5- EVENT RECOGNITION C5.1 Number of Events
recognized over the sequence C5.2 Scenario
parameters
7Metric Evaluation
- Distance for matching groundtruth and algorithms
results - Similar measures D1, D2, D3, D4.
- Few main metrics measure general trends
- Discriminant and meaningful
- Detection M1.2.1 CNumberObjectsBoundingBox
- Localization M2.4.3 CCentroid2DLocalisationPix.
- Tracking M3.3.1 CtrackingTime
- Object Classification M4.1.3 CobjectTypeOverSeque
nceBBoxID - Event Recognition M5.1.2 CNumberNamedEvents
8Metric Evaluation (contd)
- Secondary metrics
- Complementary information
- Pixel-based (M2.1.1) versus object-based (M1.2.1)
metrics - Potential algorithm errors.
- Example M3.3.1 complemented (eg., about
stability) by M3.2.1, M3.4.1 and M3.5.1. - Non-informative Metrics
- Add noise to the evaluation or non-discriminative
- Example M1.1.1 CNumberObjects gives the object
number per frame without position information. - The same for M4.1.1 and M5.1.1.
9Evaluation on ETI-VS2-BE-19-C1
10Global Results Video
- Remarks
- For similar scenes, very dissimilar results!
- For different scenes, results can spread over a
large range or concentrate in a narrow range.
11Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M1.1.1 NumberObjects
M1.2.1 NumberObjectsBoundingBoxD1
12Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
13Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M2.2.1 SplittingD5
M2.3.1 MergingD2
14Summary on Detection of Physical Objects
- Main metric measures
- Detection M1.2.1 CNumberObjectsBoundingBox
- Problems static objects, contextual objects,
background, masks - Advantages objects vs pixels, large objects and
bounding boxes - Secondary metrics
- M2.1.1 (area) indication on the precision and
handling shadows - Split/Merge measures (M2.2.1, M2.3.1)
- Advantage indicate potential merge
- Inconvenients threshold-dependent, non-detected
objects not taken into account
15Localisation of Physical Objects
16Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.3.1 MergingD2
M2.4.3 Centroid2DLocalisationPixD1
17Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.4.1 Centroid2DLocalisationD1
M2.4.3 Centroid2DLocalisationPixD1
18Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.4.2. Centroid3DLocalisationD1
19Summary on Localisation of Physical Objects
- M2.4.1, M2.4.2, M2.4.3, main metrics
- Problems low utilisation of 3D info and
calibration - Good performance good precision on reliable TP
(handling shadow and merge) - Advantages complementary to the Detection
normalised, pixel or meter metrics
20Tracking of Physical Objects
21Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.2.1 NumberObjectTrackedD1
M3.3.1 TrackingTime
22Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.4.1 PhysicalObjectIdFragmentation
M3.5.1 PhysicalObjectIdConfusion
23Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.6.1 PhysicalObject2DTrajectories
M2.4.1 Centroid2DLocalisationD1
24Summary on Tracking of Physical Objects
- M3.3.1, main metric
- Problems propagation of detection errors
- Advantages good global overview
- M3.2.1, secondary metric
- Good performance consistent TP over time for few
TPs - Problems not taking into account of complete FN
- Fragmentation/confusion (M3.4.1, M3.5.1)
- Advantage indicate potential ID switching
- Inconvenients not discriminative favoring
under-detection (few IDs) over-detection
(multiple IDs)
25Object Classification
26Object Classification (ETI-VS2-BE-19-C1.xml)
M4.1.1 ObjectTypeOverSequence
M4.1.1b ObjectTypeOverSequenceBoundingBoxD1
Subtype
27Object Classification (ETI-VS2-BE-19-C1.xml)
M4.1.3 ObjectTypeOverSequenceBoundingBoxIdD1
M4.1.2 ObjectTypeOverSequenceBoundingBoxD1
28Object Classification
29Object Classification
30Summary on Object Classification
- M4.1.2, M4.1.3, same main metrics
- Problems low classification of subtypes (doors,
bikes, bags), favoring a few good quality TPs. - Advantage reliable.
- M4.1.1 (without BBox)
- Inconvenients wrong evaluation result in case of
double errors (classified noise and FN) - Advantage indicate potential double errors.
31Event Recognition
32Event Recognition (ETI-VS2-BE-19-C1.xml)
33Event Recognition (ETI-VS2-BE-19-C1.xml)
34Event Recognition (ETI-VS2-BE-19-C1.xml)
M5.1.1 NumberEvents
M5.1.2 NumberNamedEventsD1
35Summary on Event Recognition
- M5.1.2 (with time), main metrics
- Problems lack of understanding of ground truth
definition - Advantages good global overview per scenario
type. - M5.1.1, secondary metric
- Problems not taking into account of occurrence
time
36Evaluation Results
37Evaluation on ETI-VS2-BE-19-C4
38Detection of Physical Objects (ETI-VS2-BE-19-C4.x
ml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
39Tracking of Physical Objects (ETI-VS2-BE-19-C4.xm
l)
- M3.2.1 NumberObjectTrackedD1
M3.3.1.D1 TrackingTime
40Event Recognition (ETI-VS2-BE-19-C4.xml)
- M5.1.2 NumberNamedEventsD1
M5.1.1 NumberEvents
41Evaluation Results
42Evaluation on ETI-VS2-MO-1-C1
43Detection of Physical Objects (ETI-VS2-MO-1-C1.xm
l)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
44Tracking of Physical Objects (ETI-VS2-MO-1-C1.xml
)
- M3.2.1 NumberObjectTrackedD1
M3.3.1.D1 TrackingTime
45Event Recognition (ETI-VS2-MO-1-C1.xml)
- M5.1.2 NumberNamedEventsD1
M5.1.1 NumberEvents
46Evaluation Results
47Evaluation on ETI-VS2-RD-6-C7
48Detection of Physical Objects
(ETI-VS2-RD-6-C7.xml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
49Detection of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M1.2.1 -
NumberObjectsBoundingBoxD1)
No filtering
With filtering
50Detection of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M2.1.1 -
ObjectsArea)
No filtering
With filtering
51Tracking of Physical Objects (ETI-VS2-RD-6-C7.xml
)
- M3.2.1 NumberObjectTrackedD1
M3.3.1.D1 TrackingTime
52Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M3.2.1 -
NumberObjectTrackedD1)
No filtering
With filtering
53Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M3.3.1.D1 -
TrackingTime)
No filtering
With filtering
54Event Recognition (ETI-VS2-RD-6-C7.xml)
- M5.1.2 NumberNamedEventsD1
M5.1.1 NumberEvents
55Event Recognition (ETI-VS2-RD-6-C7)
56Evaluation Results
57Evaluation on ETI-VS2-RD-10-C4
58Detection of Physical Objects
(ETI-VS2-RD-10-C4.xml)
M2.1.1 ObjectsArea
M1.2.1 NumberObjectsBoundingBoxD1
59Tracking of Physical Objects (ETI-VS2-RD-10-C4.xm
l)
- M3.2.1 NumberObjectTrackedD1
M3.3.1.D1 TrackingTime
60Event Recognition (ETI-VS2-RD-10-C4.xml)
- M5.1.2 NumberNamedEventsD1
M5.1.1 NumberEvents
61Evaluation Results
62Evaluation on ETI-VS2-AP-11-C7
63Detection of Physical Objects
(ETI-VS2-AP-11-C7.xml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
64Detection of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M1.2.1 -
NumberObjectsBoundingBoxD1)
No filtering
With filtering
65Detection of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M2.1.1 -
ObjectsArea)
No filtering
With filtering
66Tracking of Physical Objects (ETI-VS2-AP-11-C7.xm
l)
- M3.2.1 NumberObjectTrackedD1
M3.3.1.D1 TrackingTime
67Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M3.2.1 -
NumberObjectTrackedD1)
No filtering
With filtering
68Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M3.3.1.D1 -
TrackingTime)
No filtering
With filtering
69Event Recognition (ETI-VS2-AP-11-C7.xml)
M5.1.1 NumberEvents
- M5.1.2 NumberNamedEventsD1
70Event Recognition (ETI-VS2-AP-11-C7.xml)
- M5.1.2 NumberNamedEventsD1
M5.1.1 NumberEvents
71Evaluation Results
72Understanding versus Competition
- ETISEO Goal
- Not a competition nor benchmarking
- Emphasis on gaining insight into video analysis
algorithms - Better understanding of evaluation methodology
- Why? ETISEO limitations
- Algorithm results depend on time and manpower
(parameter tuning), - format understanding (XML), objective definition
(ground truth), and algorithm capacities (static,
occluded, portable and contextual objects) - previous similar experiences,
- number of processed videos, frame rate, start
frame - Metrics and parameters (split/merge)
- learning stage required or not.
73Understanding versus Competition (contd)
- Warmest thanks to the 16 teams
- 8 teams achieved high quality results
- 9 teams performed event recognition
- 10 teams produced results on all priority
sequences - Special thanks to teams 1, 8, 12, 14 and 28
- Stable and high-quality results on a large video
set - More evaluation results
74Conclusions
- Good performance comparison per video automatic,
reliable, consistent metrics. - A few insights into video surveillance
algorithms. For example, - Shadows
- merge
- A few limitations
- Lack of understanding of the evaluation rules
(output XML, time-stamp) - Data subjectivity video, background, masks
- Metrics and evaluation parameters
- Future improvements flexible evaluation tool
- Filters for reference data
- Selection of metrics and parameters
- Selection of videos