ETISEO - PowerPoint PPT Presentation

About This Presentation
Title:

ETISEO

Description:

GT & Metrics are designed to evaluate tasks all along the video processing chain: ... Add noise to the evaluation or non-discriminative ... – PowerPoint PPT presentation

Number of Views:57
Avg rating:3.0/5.0
Slides: 75
Provided by: monique8
Category:

less

Transcript and Presenter's Notes

Title: ETISEO


1
ETISEO
  • François BREMOND
  • ORION Team, INRIA Sophia Antipolis, France

2
Fair Evaluation
  • Unbiased and transparent evaluation protocol
  • Large participation
  • Meaningful evaluation

3
Tasks evaluated
GT Metrics are designed to evaluate tasks all
along the video processing chain Task 1
Detection of physical objects, Task 2
Localisation of physical objects, Task 3
Classification of physical objects, Task 4
Tracking of physical objects, Task 5 Event
recognition.
4
Matching Computation
  • To evaluate the matching between a candidate
    result and a reference data, we may use following
    distances
  • D1-The Dice coefficient Twice the shared,
    divided by the sum of both intervals
    2card(RD?C) / (card(RD) card(C)).
  • D2-The overlapping card(RD?C) / card(RD).
  • D3-Bertozzi and al. metric (card(RD?C))2 /
    (card(RD) card(C)).
  • D4-The maximum deviation of the candidate object
    or target according to the shared frame span Max
    card(C\RD) / card(C), card(RD\C) / card(RD) .

RD
C
5
metrics (1)
T1- DETECTION OF PHYSICAL OBJECTS OF
INTEREST C1.1 Number of physical objects C1.2
Number of physical objects using their bounding
box
  • T2- LOCALISATION OF PHYSICAL OBJECTS OF INTEREST
  • C2.1 Physical objects area (pixel comparison
    based on BB)
  • C2.2 Physical object area fragmentation
    (splitting)
  • C2.3 Physical object area integration (merge)
  • C2.4 Physical objects localisation
  • 2D and 3D
  • Centroïd or bottom centre point of BB

6
metrics (2)
  • T3- TRACKING OF PHYSICAL OBJECTS OF INTEREST
  • C3.1 Frame-To-Frame Tracking Link between two
    frames
  • C3.2 Number of object being tracked during time
  • C3.3 Detection time evaluation
  • C3.4 Physical object ID fragmentation
  • C3.5 Physical object ID confusion criterion
  • C3.6 Physical object 2D trajectory
  • C3.7 Physical object 3D trajectory

T4- CLASSIFICATION OF PHYSICAL OBJECTS OF
INTEREST C4.1 Object Type over the
sequence C4.2 Object classification per
type C4.3 Time Percentage Good
Classification card RD?C, Type(C) Type(RD)
/ card(RD?C)
T5- EVENT RECOGNITION C5.1 Number of Events
recognized over the sequence C5.2 Scenario
parameters
7
Metric Evaluation
  • Distance for matching groundtruth and algorithms
    results
  • Similar measures D1, D2, D3, D4.
  • Few main metrics measure general trends
  • Discriminant and meaningful
  • Detection M1.2.1 CNumberObjectsBoundingBox
  • Localization M2.4.3 CCentroid2DLocalisationPix.
  • Tracking M3.3.1 CtrackingTime
  • Object Classification M4.1.3 CobjectTypeOverSeque
    nceBBoxID
  • Event Recognition M5.1.2 CNumberNamedEvents

8
Metric Evaluation (contd)
  • Secondary metrics
  • Complementary information
  • Pixel-based (M2.1.1) versus object-based (M1.2.1)
    metrics
  • Potential algorithm errors.
  • Example M3.3.1 complemented (eg., about
    stability) by M3.2.1, M3.4.1 and M3.5.1.
  • Non-informative Metrics
  • Add noise to the evaluation or non-discriminative
  • Example M1.1.1 CNumberObjects gives the object
    number per frame without position information.
  • The same for M4.1.1 and M5.1.1.

9
Evaluation on ETI-VS2-BE-19-C1
10
Global Results Video
  • Remarks
  • For similar scenes, very dissimilar results!
  • For different scenes, results can spread over a
    large range or concentrate in a narrow range.

11
Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M1.1.1 NumberObjects
M1.2.1 NumberObjectsBoundingBoxD1
12
Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
13
Detection of Physical Objects (ETI-VS2-BE-19-C1.x
ml)
M2.2.1 SplittingD5
M2.3.1 MergingD2
14
Summary on Detection of Physical Objects
  • Main metric measures
  • Detection M1.2.1 CNumberObjectsBoundingBox
  • Problems static objects, contextual objects,
    background, masks
  • Advantages objects vs pixels, large objects and
    bounding boxes
  • Secondary metrics
  • M2.1.1 (area) indication on the precision and
    handling shadows
  • Split/Merge measures (M2.2.1, M2.3.1)
  • Advantage indicate potential merge
  • Inconvenients threshold-dependent, non-detected
    objects not taken into account

15
Localisation of Physical Objects
16
Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.3.1 MergingD2
M2.4.3 Centroid2DLocalisationPixD1
17
Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.4.1 Centroid2DLocalisationD1
M2.4.3 Centroid2DLocalisationPixD1
18
Localisation of Physical Objects
(ETI-VS2-BE-19-C1.xml)
M2.4.2. Centroid3DLocalisationD1
19
Summary on Localisation of Physical Objects
  • M2.4.1, M2.4.2, M2.4.3, main metrics
  • Problems low utilisation of 3D info and
    calibration
  • Good performance good precision on reliable TP
    (handling shadow and merge)
  • Advantages complementary to the Detection
    normalised, pixel or meter metrics

20
Tracking of Physical Objects
21
Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.2.1 NumberObjectTrackedD1
M3.3.1 TrackingTime
22
Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.4.1 PhysicalObjectIdFragmentation
M3.5.1 PhysicalObjectIdConfusion
23
Tracking of Physical Objects (ETI-VS2-BE-19-C1.xm
l)
M3.6.1 PhysicalObject2DTrajectories
M2.4.1 Centroid2DLocalisationD1
24
Summary on Tracking of Physical Objects
  • M3.3.1, main metric
  • Problems propagation of detection errors
  • Advantages good global overview
  • M3.2.1, secondary metric
  • Good performance consistent TP over time for few
    TPs
  • Problems not taking into account of complete FN
  • Fragmentation/confusion (M3.4.1, M3.5.1)
  • Advantage indicate potential ID switching
  • Inconvenients not discriminative favoring
    under-detection (few IDs) over-detection
    (multiple IDs)

25
Object Classification
26
Object Classification (ETI-VS2-BE-19-C1.xml)
M4.1.1 ObjectTypeOverSequence
M4.1.1b ObjectTypeOverSequenceBoundingBoxD1
Subtype
27
Object Classification (ETI-VS2-BE-19-C1.xml)
M4.1.3 ObjectTypeOverSequenceBoundingBoxIdD1
M4.1.2 ObjectTypeOverSequenceBoundingBoxD1
28
Object Classification
29
Object Classification
30
Summary on Object Classification
  • M4.1.2, M4.1.3, same main metrics
  • Problems low classification of subtypes (doors,
    bikes, bags), favoring a few good quality TPs.
  • Advantage reliable.
  • M4.1.1 (without BBox)
  • Inconvenients wrong evaluation result in case of
    double errors (classified noise and FN)
  • Advantage indicate potential double errors.

31
Event Recognition
32
Event Recognition (ETI-VS2-BE-19-C1.xml)
33
Event Recognition (ETI-VS2-BE-19-C1.xml)
34
Event Recognition (ETI-VS2-BE-19-C1.xml)
M5.1.1 NumberEvents
M5.1.2 NumberNamedEventsD1
35
Summary on Event Recognition
  • M5.1.2 (with time), main metrics
  • Problems lack of understanding of ground truth
    definition
  • Advantages good global overview per scenario
    type.
  • M5.1.1, secondary metric
  • Problems not taking into account of occurrence
    time

36
Evaluation Results
37
Evaluation on ETI-VS2-BE-19-C4
38
Detection of Physical Objects (ETI-VS2-BE-19-C4.x
ml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
39
Tracking of Physical Objects (ETI-VS2-BE-19-C4.xm
l)
  • M3.2.1 NumberObjectTrackedD1

M3.3.1.D1 TrackingTime
40
Event Recognition (ETI-VS2-BE-19-C4.xml)
  • M5.1.2 NumberNamedEventsD1

M5.1.1 NumberEvents
41
Evaluation Results
42
Evaluation on ETI-VS2-MO-1-C1
43
Detection of Physical Objects (ETI-VS2-MO-1-C1.xm
l)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
44
Tracking of Physical Objects (ETI-VS2-MO-1-C1.xml
)
  • M3.2.1 NumberObjectTrackedD1

M3.3.1.D1 TrackingTime
45
Event Recognition (ETI-VS2-MO-1-C1.xml)
  • M5.1.2 NumberNamedEventsD1

M5.1.1 NumberEvents
46
Evaluation Results
47
Evaluation on ETI-VS2-RD-6-C7
48
Detection of Physical Objects
(ETI-VS2-RD-6-C7.xml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
49
Detection of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M1.2.1 -
NumberObjectsBoundingBoxD1)
No filtering
With filtering
50
Detection of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M2.1.1 -
ObjectsArea)
No filtering
With filtering
51
Tracking of Physical Objects (ETI-VS2-RD-6-C7.xml
)
  • M3.2.1 NumberObjectTrackedD1

M3.3.1.D1 TrackingTime
52
Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M3.2.1 -
NumberObjectTrackedD1)
No filtering
With filtering
53
Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-RD-6-C7.xml M3.3.1.D1 -
TrackingTime)
No filtering
With filtering
54
Event Recognition (ETI-VS2-RD-6-C7.xml)
  • M5.1.2 NumberNamedEventsD1

M5.1.1 NumberEvents
55
Event Recognition (ETI-VS2-RD-6-C7)
56
Evaluation Results
57
Evaluation on ETI-VS2-RD-10-C4
58
Detection of Physical Objects
(ETI-VS2-RD-10-C4.xml)
M2.1.1 ObjectsArea
M1.2.1 NumberObjectsBoundingBoxD1
59
Tracking of Physical Objects (ETI-VS2-RD-10-C4.xm
l)
  • M3.2.1 NumberObjectTrackedD1

M3.3.1.D1 TrackingTime
60
Event Recognition (ETI-VS2-RD-10-C4.xml)
  • M5.1.2 NumberNamedEventsD1

M5.1.1 NumberEvents
61
Evaluation Results
62
Evaluation on ETI-VS2-AP-11-C7
63
Detection of Physical Objects
(ETI-VS2-AP-11-C7.xml)
M1.2.1 NumberObjectsBoundingBoxD1
M2.1.1 ObjectsArea
64
Detection of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M1.2.1 -
NumberObjectsBoundingBoxD1)
No filtering
With filtering
65
Detection of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M2.1.1 -
ObjectsArea)
No filtering
With filtering
66
Tracking of Physical Objects (ETI-VS2-AP-11-C7.xm
l)
  • M3.2.1 NumberObjectTrackedD1

M3.3.1.D1 TrackingTime
67
Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M3.2.1 -
NumberObjectTrackedD1)
No filtering
With filtering
68
Tracking of Physical Objects Reference Data
Filtering (ETI-VS2-AP-11-C7.xml M3.3.1.D1 -
TrackingTime)
No filtering
With filtering
69
Event Recognition (ETI-VS2-AP-11-C7.xml)
M5.1.1 NumberEvents
  • M5.1.2 NumberNamedEventsD1

70
Event Recognition (ETI-VS2-AP-11-C7.xml)
  • M5.1.2 NumberNamedEventsD1

M5.1.1 NumberEvents
71
Evaluation Results
72
Understanding versus Competition
  • ETISEO Goal
  • Not a competition nor benchmarking
  • Emphasis on gaining insight into video analysis
    algorithms
  • Better understanding of evaluation methodology
  • Why? ETISEO limitations
  • Algorithm results depend on time and manpower
    (parameter tuning),
  • format understanding (XML), objective definition
    (ground truth), and algorithm capacities (static,
    occluded, portable and contextual objects)
  • previous similar experiences,
  • number of processed videos, frame rate, start
    frame
  • Metrics and parameters (split/merge)
  • learning stage required or not.

73
Understanding versus Competition (contd)
  • Warmest thanks to the 16 teams
  • 8 teams achieved high quality results
  • 9 teams performed event recognition
  • 10 teams produced results on all priority
    sequences
  • Special thanks to teams 1, 8, 12, 14 and 28
  • Stable and high-quality results on a large video
    set
  • More evaluation results

74
Conclusions
  • Good performance comparison per video automatic,
    reliable, consistent metrics.
  • A few insights into video surveillance
    algorithms. For example,
  • Shadows
  • merge
  • A few limitations
  • Lack of understanding of the evaluation rules
    (output XML, time-stamp)
  • Data subjectivity video, background, masks
  • Metrics and evaluation parameters
  • Future improvements flexible evaluation tool
  • Filters for reference data
  • Selection of metrics and parameters
  • Selection of videos
Write a Comment
User Comments (0)
About PowerShow.com