Vehicles Avoidance and Identify System - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Vehicles Avoidance and Identify System

Description:

??????????????????????????? Optical Encoders ????????????????????????????????????????????? ... odometry which involves optical encoders directly coupled to the ... – PowerPoint PPT presentation

Number of Views:68
Avg rating:3.0/5.0
Slides: 38
Provided by: Siri7
Category:

less

Transcript and Presenter's Notes

Title: Vehicles Avoidance and Identify System


1
?????????????????????????? (Vehicles Avoidance
and Identify System)
  • TRS

2
??????
  • ??????????
  • ?????????????? (Sensors)
  • ??????????????????? (Avoid Obstacle System)
  • ????????????? (Identify System)
  • ????

3
??????????
  • ?????????? ??????????????????????????????????????
    ???????????????? ?????????????????????????????
    ????????????????????????? ???? Sonars ??? Laser
    Scanner ??????????????????????????????????????????
    ??? ??????????????? ??????????????????????????????
    ???? ?????????????????????????????????????????????
    ??????????????????? ?????????????????
    ?????????????????? ?????????????
    ?????????????????????? ????????????????????????
    (Fuzzy Control) ??????????????????????????????
    (Basic Behaviors) ????????????????????????????????
    ?????????????? ??????????????????????????????????
    ??????????

4
?????????????? (Sensors)
  • ?????????????????????????????????
  • ?????????????????????? (Velocity Sensors)
  • ???????????????????? (Heading Sensors)
  • ?????????????????? (Distance Sensors)
  • ????????????????????? (Position Sensors)

5
?????????????????????? (Velocity Sensors)
  • ????????????????????????????????????? (Inertia
    Navigation Systems) ???????? gyroscope
    ?????????????????? (acceleration)
    ????????????????? (x, y, z) ????????? integrate
    ??????????????????? ???????????????????????????
    (???? DMU-6x)
  • ??????????????????????????? Optical Encoders
    ?????????????????????????????????????????????

6
???????????????????? (Heading Sensors)
  • Gyroscopes provides angle relative to robot, but
    are not good when the robot is turning very
    slowly.
  • Compasses
  • Magnetic Compasses
  • Halls effect Compasses
  • Fluxgate Compasses (i.e. KVH C100)

7
?????????????????? (Distance Sensors)
  • Ultrasonic or Sonar Sensors measures the time
    elapsed between the transmission of a signal and
    the receiving of an echo of transmitted signal
    (time of flight) to determine the distance to an
    obstacle.
  • Laser Sensors An optical measurement sensor
    system with a useful range of 0.3 to 50 m. for
    most diffuse reflective surfaces. It operates by
    emitting a collimated laser beam that is
    reflected from the target surface and collected
    by the sensor. The sensor is suitable for a wide
    variety of distance measurement applications that
    demand accuracy and fast response times.

8
Laser Sensors
Comparison of commercially available scanning
laser rangefinders
9
????????????????????? (Position Sensors)
  • Dead Reckoning a simple procedure for
    determining the robots position. The most
    simplistic implementation of dead reckoning is
    called odometry which involves optical encoders
    directly coupled to the motor armatures or wheel
    axles.
  • GPS a satellite navigation system. The GPS
    receiver will be considered as a global
    navigation device for mobile robots.

10
??????????????????? (Avoid Obstacle System)
  • ??????????????????? ?? 2 ????? ????????????
    ?????????? ??????????????????????????Virtual
    Force Field (VFF) ??????????? ????????????????????
    ??? (Fuzzy-based Obstacle Avoidance)

11
Virtual Force Field
12
Fuzzy-based Obstacle Avoidance
  • Feature extraction Read sonar and laser data
  • Construct three membership functions for each
    Input
  • Construct five MFs for output
  • Construct nine rules for avoiding
  • Defuzzification

13
Feature Extraction
Each fuzzy input is given by (e.g. sonar sensor)
Construct three membership functions for each
input
14
Input MFs
ZR MD
LG
15
MFs for Output 1 (w)
NB N Z P PB
16
MFs for Output 2 (v)
NB,N, P, PB
17
Rules for Output 1 (w)
18
Rules for Output 2 (v)
19
If-Then Rules
20
FIS 1
21
FIS 2
22
The output surface of a fuzzy system for angular
velocity and linear velocity
linear velocity
angular velocity
23
??????????????????
24
Avoid-Obstacle Behavior
--- Agent
Avoid-obstacle (Fuzzy)
S
Base Server
Avoid-obstacle (VFF)
S
25
????????????? (Identify System)
  • ????????????????? ???????????????????????
    ??????????????????? ??????????????????????????????
    ????????????????????????????????? ???????????????
    ??????????????????????????????????????????????????
    ???? ?????????????????????????????

26
Learning Fuzzy Rules Technique
  • Generate a Set of Fuzzy Rules

27
Learning Fuzzy Rules (Cont.)
  • Reinforcement Learning Gain

28
Learning Fuzzy Rules (Cont.)
  • Integrate a Set of Fuzzy Rules

29
????????????????????
  • ??????????
  • Sonar ??? Laser
  • ?????????????? fuzzy inputs
  • Obstacle force from all obstacle distances
  • Closest obstacle distance
  • Closest obstacle direction

30
Learning Fuzzy Rules
  • Fuzzify the sensory readings
  • Obstacle force direction (q )
  • Closest obstacle distance (d )
  • Closest obstacle direction (q )
  • Fuzzify the motor action
  • Linear velocity (v)
  • Angular velocity (w )
  • Learning to built a set of fuzzy rules

force
min
min
31
Learning Fuzzy Rules
Fuzzify
Max(.)
Max(.)
Obst. Force (q )
Linear Velocity
force
Xin-1
Yin
Closest obst. (d )
min
Angular Velocity
Closest obst. (q )
min
Inputs
Outputs
Rules
Example of Fuzzy Rules
32
Example of fuzzy rules for avoid-obstacle
behavior
Fuzzy Control
33
Fuzzy Control
Adaptive fuzzy rules
Defuzzify
Fuzzify
Max(.)
Obst. Force (q )
Linear Velocity
Xin
force
Yin
Closest obst. (d )
min
Angular Velocity
Closest obst. (q )
min
Inputs
Outputs
Rules
34
Fuzzy Control
Adaptive fuzzy rules
Defuzzify
Fuzzify
Max(.)
Obst. Force (q )
Linear Velocity
Xin
force
Yin
Closest obst. (d )
min
Angular Velocity
Closest obst. (q )
min
Inputs
Outputs
Rules
35
????????????????
Ex1 ??????????????????????????????????????Ex2
?????????????????????????????????
36
????
  • ???????????????????????? (Data Client-Server)
    ??????????????? ?????????????????????????
    ?????????????????????????????
  • ?????????????????????????? ???????????????????????
    ?? (Move to Point Behavior), ?????????????????
    (Avoid Obstacle Behavior) ???????????????????????
    ?????????? (Wander Behavior)
  • ??????????????????????????????????????????????
    ????????????? Subsumption ??? Motor Schemas
  • ???????????????????????????????????
    ?????????????????????????????
  • ???????????????????? C ?????????????????????
    Linux
  • ?????????????????????????????????

37
?????????????
  • S. Thongchai,"Sensory Motor Coordination Based
    Fuzzy Control for Mobile Robots Learning ", TRS
    Conference on Robotics and Industrial Technology
    2004,(CRIT 2004), Rose Garden Aprime Resort,
    Sampran, Nakorn Patho, Thailand, 26-27 March,
    2004.
  • S. Thongchai, "Behavior-Based Learning Fuzzy
    Rules for Mobile Robots", American Control
    Conference, Anchorage, Alaska, 2002.
  • S. Thongchai and K. Kawamura,"Application of
    Fuzzy Control to a Sonar-Based Obstacle Avoidance
    Mobile Robot", Proceedings of the IEEE
    International Conference on Control Applications
    , Anchorage, Alaska, USA, September 25-27, 2000.
Write a Comment
User Comments (0)
About PowerShow.com