Title: Leakageresilient Signatures
1Leakage-resilient Signatures
Vinod Vaikuntanathan
(IBM)
Jonathan Katz
(IBM Univ. of Maryland)
2Leakage-resilient Crypto
Crypto Device
Secret-Memory
Secret-Key
L(SM)
L(SK)
SK
L any polynomial-size circuit
MR03,DP08,P09,AGV09,
L smaller class of circuits
Riv97,B99,CDH00,ISW03,FRT09,RV09
3Models of Leakage
What leaks?
Memory Leakage HSH08, AGV09
All secret memory leaks
Computational Leakage MR03
Only computation leaks information
How much?
Bounded
Continual
Total leakage lt a(secret)
Leakage in any time-period lt a(secret)
4Models of Leakage
Memory Leakage HSH08, AGV09
AGV09, NS09, ADW09
This Work
Computational Leakage MR03
MR03, DP08, P09,FKPR09
Bounded
Continual
5Leakage-Resilient Signatures
GMR-security
against bounded a(.)-memory attacks
For every PPT Adv, if L(SK) a(SK), PrAdv
wins is negligible.
PK
L
Adv
L(SK)
m
Sign(m)
(m,s)
6Leakage-Resilient Signatures
ADW09
Bounded (1/2-e)n memory leakage, in random oracle
model
FKPR09
Continual a(n) comp. leakage, assuming
2a(n)-hardness
Memory Leakage
ADW09
Comp. Leakage
FKPR09
Continual
Bounded
7Our Results
Setting bounded, memory leakage
A New Scheme
- (1-e) fraction leakage,?egt0
- Assumption Semantically secure enc. NIZK
An Old Scheme ( tweaks)
- one-time signature (generally, t-time)
- Assumption One-way functions
(and more)
8Our Results
This Work FKPR09
9Leakage-resilient One-way Functions
Definition
Hard to invert f given L(x), for any L s.t.
L(x) a(n).
Lemma
Any UOWHF is a leakage-resilient OWF.
Proof (for CRHFs)
- L0,1n ? 0,1n/2-1 is any leakage function
- x has min-entropy n/2 given h(x)
- x has min-entropy 1 given h(x) and L(x)
- Given h(x) and L(x), an inverter returns x'?x
w.p 1/2
10Fully-secure Signature
UOWHF Public-key Encryption Simulation-sound
NIZK BFM,Sahai
Assumptions
x ? 0,1n
SK
PK
(h, h(x), PKenc, CRSnizk)
C Enc(PKenc,(x,m))
? Proof in SS-NIZK that ?x s.t PK contains
h(x) and C is the enc. of (x,m)
Sign(m)
Output (C, ?).
11Proof of Security
Three Ideas
- Signature contains no (computational) info. on SK
- NIZK proof ? is simulatable
- Enc(x,m) c Enc(0,m)
PK(h,h(x),)
L(x)
Adv
m
s(Enc(x,m),?)
s(Enc(0,m),?)
(m,s)
12Proof of Security
Three Ideas
- Signature contains no (computational) info. on SK
- Forgery ? extract a secret-key.
- simulation-soundness
PK(h,h(x),)
L(x)
Adv
s contains Enc(x,m) where h(x)h(x)
(m,s)
13Proof of Security
Three Ideas
- Signature contains no (computational) info. on SK
- Forgery ? extract a secret-key.
- simulation-soundness
PK(h,h(x),)
L(x)
Adv
x s.t. h(x)h(x)
14Proof of Security
Three Ideas
- Signature contains no (computational) info. on SK
- Forgery ? extract a secret-key.
- UOWHF Leakage-resilient OWF.
Contradiction.
PK(h,h(x),)
L(x)
Adv
x s.t. h(x)h(x)
15A Recipe?
Given signature scheme s.t.
- H8SK given Advs view is non-zero
Leakage-resilient Signature
- Forgery ? extract a secret-key
- Finding two SKs for a PK is an attack
16One-time Signature
(based on Lamport78)
Sign(m1mn) (x1,0 x2,1 xn,0)
010
Q Is Lamport leakage-resilient?
17One-time Signature
(based on Lamport78)
Assumption OWF f
xn,0
x1,0
yn,0
y2,0
y1,0
x2,0
SK
PK
x1,1
x2,1
y2,1
xn,1
y1,1
yn,1
Sign(010)
Leakage
!
Sign(110)
18One-time Signature
(based on Lamport78)
Sign(ECC(m))
Sign'(m)
19One-time Signature
(based on Lamport78)
Sign(ECC(m))
Sign'(m)
Still insecure
Consider f(x) that ignores 99 of x outputs
OWF(1 of x).
Solution Let f be a leakage-resilient OWF
(UOWHF)
20One-time Signature
(based on Lamport78)
Sign(ECC(m))
Sign'(m)
21An Open Question
This Work
Bounded, memory leakage
FKPR09
Continual, computational leakage
Best of both worlds?
?
Memory Leakage
This Work
Computational Leakage
This Work FKPR09
Bounded
Continual
22Thanks!