Title: Statistical Bases for Map Reconstructions and Comparisons
1Statistical Bases for Map Reconstructions and
Comparisons
2Preliminaries
3Outline
- Motivation
- Do Different Maps Differ?
- Methods
- Singular-Value Decomposition
- Multidimensional Scaling and PCA
- Mantel Permutation Test
- Procrustean Fit and Permu. Test
- Bidimensional Regression
- Working Example
- Locational Attributes of Eight URSB Campuses
4Motivation
- Comparing Maps Over Time
- Accuracy of a 14th Century Map
- Leader Image Change in Great Britain
- Where IS Wall Street, post-9/11?
- Comparing Maps Among Sub-samples
- Things People Fear, M v. F
- Face-to-Face Comparisons
- Comparing Maps Across Attributes
- Competitive Positioning of Firms
- Chinese Provinces Human Dev. Indices
5Accuracy of a 14th Century Map
http//www.geog.ucsb.edu/tobler/publications/ pdf
_docs/geog_analysis/Bi_Dim_Reg.pdf
6http//www.mori.com/pubinfo/rmw/two-triangulation-
models.pdf
7http//igeographer.lib.indstate.edu/pohl.pdf
8Things People Fear, F v. M
http//www.analytictech.com/borgatti/papers/borgat
ti 200220-20A20statistical20method20for20co
mparing.pdf
9Face-to-Face Comparisons
http//www.multid.se/references/Chem20Intell20La
b20Syst2072,2012320(2004).pdf
10http//www.gsoresearch.com/page2/map.htm
11(No Transcript)
12Methods
- Eigen-Analysis and Singular-Value Decomposition
-
- Multidimensional Scaling Principal Comps.
- Mantel Permutation Test
- Procrustean Fit and Permutation Test
- Bidimensional Regression
13Eigen-analysis
- C an NxN variance-covariance matrix
- Find the N solutions to C? ??
- ? the N Eigenvalues, with ?1 ?2
- ? the N associated Eigenvectors
- C LDL, where
- L matrix of ?s
- D diagonal matrix of ?s
14Singular Value Decomposition
- Every NxP matrix A has a SVD
- A U D V
- Columns of U Eigenvectors of AA
- Entries in Diagonal Matrix D Singular Values
- SQRT of Eigenvalues of either AA or AA
- Columns of V Eigenvectors of AA
15SVD
16Principal Component Analysis
- A is a column-centered data matrix
- A U D V
- V Row-wise Principal Components
- D Proportional to variance explained
- UD Principal Component Scores
- DV Principle Axes
17Multidimensional Scaling
- A is a column-centered dissimilarity matrix
- B
- B U D V
- B XX, where X UD1/2
- Limit X to 2 Columns
- ? Coordinates to 2d MDS
18Given Dissimilarity Matrices A and B
A Random Permutation Test
N! Permutations 37! 1.4E43 8! 40,320
19Permutation Tests
Observed Test Statistic TS 25 Correct Of 37
SB. Is 25 Significantly 18.5?
Ho TS 18.5 HA TS 18.5
P .069 P .05 Do Not Reject Ho
Permute List rerun
20(No Transcript)
21http//www.entrenet.com/groedmed/greekm/mythproc.
html
22Centering Scaling
Rotation Dilation to Min ?(?2)
Mirror Reflection
http//www.zoo.utoronto.ca/jackson/pro2.html
23Procrustean Analysis
- Two NxP data configurations, X and Y
- XY U D V
- H UV
- OLS ? Min SSE tr ?(XH-Y)(XH-Y)
- tr(XX) tr(YY) -2tr(D)
- tr(XX) tr(YY) 2tr(VDV)
24OLS Regression
- Y X? ?
- Y Xb e
- X UDV
- b VrD-1UrY, where r first r columns (NP)
- b (XX)-1XY
- b VrVr ?
- Estimated Y values Ur UrY
25Bidimensional Regression
- (Y,X) Coordinate pair in 2d Map 1
- Y ?0 ?0X
- (A,B) Coordinate pair in 2d Map 2
- EA ?1 ?1 -?2 X ?1
- EB ?1 ?2 ?1 Y ?2
- ?1 Horizontal Translation
- ?2 Vertical Translation
- ? Scale Transformation SQRT(?12 ?22)
- ? Angle Transformation TAN-1(?2 / ?1 ) 1800
Iff ?1
26Angle of rotation around origin (0,0)
Horizontal Vertical Translation
Although r 1, differ in location, scale,
and angles of rotation around origin (0,0)
Scale transform, with ?
1 if expansion
27Working Example
- Eight URSB Campuses
- RD, BK, TO, RC, SA, RV, SD, TA
- Data Sources
- Locations
- Housing Attributes
- Tapestry Attributes
- Data Analyses
28Eight URSB Campuses
2987.5 miles
88.1 miles
30(No Transcript)
31 32(No Transcript)
33EXAMPLE Eight URSB Campuses
34(No Transcript)
35BK
RC
RD
RV
TO
SA
TA
SD
36 and if DISTANCES available, but COORDINATES
Unavailable?
- Treat Distance Matrix as Dissimilarity Matrix
- Apply Multidimensional Scaling
- Apply the two-dimension solution as if it
represents latitude and longitude coordinates
37Distance Estimates Vary
But Not Significantly
38MDS RepresentationInput D Output 2d
D 8x8
39Errors appear to be quite small BUT is
there a way to test if errors are STAT SIGNIF ?
RD
RV
RC
TA
BK
SD
SA
TO
40Mantel Test
41Procrustean TestMDS Map Recreation
CONCLUDE Near-perfect Map Recreation
42Driving Distances
Do these differ significantly from linear
distances?
PRACTICAL
STATISTICAL
43DriveD Driving DistancesEight URSB Locations
Multidimensional Scaling, with 2-dimension
solution
44RD
RV
RC
TA
SA
BK
SD
TO
45(No Transcript)
46Bidimensional RegressionAB on YX
47PROTEST Comparison
Bidimensional Regression
Procrustean Rotation
48Housing
49Tapestry (ESRI)
50Map Coordinates as Explanatory Variables in
Linear Models
51Incremental Tests
So Map Coordinates seem sufficient as predictors
52Proxy Measures of lat-longin Linear Model
Translations Transforms Reduce ?8 And ? R2
53Robust criterion would help here Min (Med(?2))
54Is There a Linear RelationshipBetween Housing
and Tapestry Data?
Bidimensional Regression
r 0.5449
Must Standardize Data
55(No Transcript)
56Its Still a 3-d World
57(No Transcript)