Paired electron pockets in the holedoped cuprates - PowerPoint PPT Presentation

1 / 76
About This Presentation
Title:

Paired electron pockets in the holedoped cuprates

Description:

New metallic state, the ACL with 'ghost' electron and hole pockets, is a useful ... R map (150 mV) 4a0. 12 nm. TA Contrast is at oxygen site (Cu-O-Cu bond-centered) ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 77
Provided by: qptPhysic
Category:

less

Transcript and Presenter's Notes

Title: Paired electron pockets in the holedoped cuprates


1
Paired electron pockets in the hole-doped
cuprates Talk online
sachdev.physics.harvard.edu
2
Paired electron pockets in the hole-doped
cuprates
Hole dynamics in an antiferromagnet across a
deconfined quantum critical point, R. K. Kaul,
A. Kolezhuk, M. Levin, S. Sachdev, and T.
Senthil, Physical Review B 75 , 235122 (2007).
Algebraic charge liquids and the underdoped
cuprates, R. K. Kaul, Y. B. Kim, S. Sachdev, and
T. Senthil, Nature Physics 4, 28 (2008).
Destruction of Neel order in the cuprates by
electron doping, R. K. Kaul, M. Metlitksi, S.
Sachdev, and C. Xu, Physical Review B 78, 045110
(2008).
Paired electron pockets in the underdoped
cuprates, V. Galitski and S. Sachdev,
arXiv0901.0005
3
Victor Galitski Maryland
Ribhu Kaul UCSB
Cenke Xu Harvard
4
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
5
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
6
The cuprate superconductors
7
(No Transcript)
8
Overdoped SC State Momentum-dependent Pair
Energy Gap
The SC energy gap has four nodes.
Shen et al PRL 70, 3999 (1993) Ding et al
PRB 54 9678 (1996) Mesot et al PRL 83 840
(1999)
9
Pseudogap Temperature-independent energy gap
exists TgtgtTc
?1
-?1
?1
PG
dSC
Ch. Renner et al, PRL 80, 149 (1998) Ø. Fischer
et al, RMP 79, 353 (2007)
10
Pseudogap Temperature-independent energy gap
near k(p,0)
E
?1
?1
PG
ky
kx
dSC
Loeser et al, Science 273 325 (1996) Ding et al,
Nature 382 51, (1996) Norman et al, Nature 392 ,
157 (1998) Shen et al Science 307, 902
(2005) Kanigel et al, Nature Physics 2,447 (2006)
Tanaka et al, Science 314, 1912 (2006)
11
Pseudogap Temperature-dependent energy gap near
node
E
?1
?1
?0
PG
?0
ky
kx
dSC
Loeser et al, Science 273 325 (1996) Ding et al,
Nature 382 51, (1996) Norman et al, Nature 392 ,
157 (1998) Shen et al Science 307, 902
(2005) Kanigel et al, Nature Physics 2,447 (2006)
Tanaka et al, Science 314, 1912 (2006)
12
Development of Fermi arc with underdoping
Y. Kohsaka et al., Nature 454, 1072, (2008)
13
Competition between the pseudogap and
superconductivity in the high-Tc copper
oxides T. Kondo, R. Khasanov, T. Takeuchi, J.
Schmalian, A. Kaminski, Nature 457, 296 (2009)
14
Nodal-anti-nodal dichotomy in the underdoped
cuprates
S. Hufner, M.A. Hossain, A. Damascelli, and G.A.
Sawatzky, Rep. Prog. Phys. 71, 062501 (2008)
15
(No Transcript)
16
Attractive phenomenological model, but
theoretical and microscopic basis is unclear
17
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
18
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
19
Spin density wave theory in electron-doped
cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
20
Spin density wave theory in electron-doped
cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
21
Spin density wave theory in electron-doped
cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
22
Photoemission in NCCO (electron-doped)
N. P. Armitage et al., Phys. Rev. Lett. 88,
257001 (2002).
23
Spin density wave theory in electron-doped
cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
24
Spin density wave theory in hole-doped cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
25
Spin density wave theory in hole-doped cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
26
Spin density wave theory in hole-doped cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
27
Spin density wave theory in hole-doped cuprates
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys.
Rev. B 51, 14874 (1995). A. V. Chubukov and D.
K. Morr, Physics Reports 288, 355 (1997).
28
Spin density wave theory in hole-doped cuprates
Incommensurate order in YBa2Cu3O6x
N. Harrison, arXiv0902.2741.
29
N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J.
Levallois, J.-B. Bonnemaison, R. Liang,
D. A. Bonn, W. N. Hardy, and L. Taillefer,
Nature 447, 565 (2007)
30
Nature 450, 533 (2007)
31
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
32
Outline
1. Nodal-anti-nodal dichotomy in the
cuprates Survey of recent experiments 2. Spin
density wave theory of normal metal From a
large Fermi surface to electron and hole
pockets 3. Algebraic charge liquids
Pairing by gauge forces, d-wave
superconductivity, and the
nodal-anti-nodal dichotomy
33
Spin density wave theory in hole-doped cuprates
34
Fermi pockets in hole-doped cuprates
35
Charge carriers in the lightly-doped cuprates
with Neel order
Electron pockets
Hole pockets
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
N. E. Bonesteel, I. A. McDonald, and C. Nayak,
Phys. Rev. Lett. 77, 3009 (1996). I. Ussishkin
and A. Stern, Phys. Rev. Lett. 81, 3932 (1998).
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
Neutron scattering on La1.9Sr0.1CuO4 B. Lake et
al., Nature 415, 299 (2002)
55
Neutron scattering on La1.855Sr0.145CuO4 J. Chang
et al., arXiv0902.1191
56
Neutron scattering on YBa2Cu3O6.45 D. Haug et
al., arXiv0902.3335
57
Exhibit quantum oscillations without Zeeman
splitting
58
Strong e-pocket pairing removes Fermi surface
signatures from H0 photoemission experiments
59
(No Transcript)
60

61

62
(No Transcript)
63
_



_
64
_



_

65
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

66
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

67
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

68
(No Transcript)
69
Exhibit quantum oscillations without Zeeman
splitting
Neutron scattering on LSCO and YBCO
70
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

71
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

72
Tunneling Asymmetry (TA)-map at E150meV
Bi2.2Sr1.8Ca0.8Dy0.2Cu2Oy
Ca1.90Na0.10CuO2Cl2
12 nm
Indistinguishable bond-centered TA contrast with
disperse 4a0-wide nanodomains
Y. Kohsaka et al. Science 315, 1380 (2007)
73
TA Contrast is at oxygen site (Cu-O-Cu
bond-centered)
R map (150 mV)
Ca1.88Na0.12CuO2Cl2, 4 K
4a0
12 nm
Y. Kohsaka et al. Science 315, 1380 (2007)
74
TA Contrast is at oxygen site (Cu-O-Cu
bond-centered)
R map (150 mV)
Ca1.88Na0.12CuO2Cl2, 4 K
4a0
12 nm
Evidence for a predicted valence bond supersolid
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,
219 (1991). M. Vojta and S. Sachdev, Phys. Rev.
Lett. 83, 3916 (1999).
75
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping

76
Conclusions
  • Non-Landau-Ginzburg theory for loss of spin
    density wave order in a metal
  • Natural route to d-wave pairing with strong
    pairing at the antinodes and weak pairing at the
    nodes
  • New metallic state, the ACL with ghost electron
    and hole pockets, is a useful starting point for
    building field-doping phase diagram
  • Paired electron pockets are expected to lead to
    valence-bond-solid modulations at low temperature
  • Needed theory for transition to large Fermi
    surface at higher doping
Write a Comment
User Comments (0)
About PowerShow.com