Title: Bone structure adaptation as a cellular automaton optimization process
1Bone structure adaptation as a cellular automaton
optimization process
- Andrés Tovar, Glen L. Niebur, Mihir Sen and John
E. Renaud - Department of Aerospace and Mechanical
Engineering - University of Notre Dame, Indiana
- Brian Sanders
- Air Force Research Laboratory
- Wright-Patterson AFB, Ohio
- Presentation at General Motors Corporation
- Detroit, Michigan
- 6 May 2004
2(No Transcript)
3(No Transcript)
4Meyer and Culmann, 1867 Wolff, 1892
5Cellular Automata (CAs) Biological dynamics
Finite Element Method (FEM) Bone static models
Hybrid Cellular Automata (HCA) Bone adaptation
dynamic model
6Content
- 1. Bone Adaptation
- 2. Cellular Automata (CAs)
- 3. The Hybrid Cellular Automaton (HCA) method
- Local Control Rule
- Performance
- 4. Examples
- 5. Final remarks
71. Bone Adaptation
8(No Transcript)
9100mm
10Frost, 1964, 1969
1110mm
12Skerry et al., 1989 Cowin et al., 1991 Lanyon,
1993 Klein-Nulend et al., 1995
13Mullender et al. 1994, Mullender and Huiskes,
1995
14Ott, 2001
152. Cellular Automata
0.1mm
The average density of osteocytes is 12,000
20,000 cells/mm3 Frost, 1960 Bodyne, 1972
162. Cellular Automata
CAs are dynamical systems that are discrete in
space and time and operate on a uniform, regular
lattice.
17 CAs are characterized by local interactions.
18 CAs have been used to simulate physical and
biological phenomena since their creation by von
Neumann in 1940s.
Wolfram, 2002
Conway, 1970
Tovar, 2003
Chopard and Droz, 1998
193. Hybrid Cellular Automaton Model
Mechanical set point
Mechanical signal
U
U
Hajela and Kim, 2001 Abdalla and Gürdal, 2002
203. Hybrid Cellular Automaton Model
FEM
U
U
213. Hybrid Cellular Automaton Model
FEM
U
U
223. Hybrid Cellular Automaton Model
FEM
U
U
no
yes
?
End
233.1 Local control strategy
a) Two-position control
b) Proportional control
c) Integral control
d) Derivative control
243.1 Local control strategyTwo-position control
t21 U6.7170 M0.539
c.f. Sauter, 1992
253.1 Local control strategyProportional control
t23 U6.3265 M0.581
c.f. Martin et al., 1998
263.1 Local control strategyProportional-Integral
control
t16 U6.4576 M0.568
c.f. Hazelwood et al., 2001
273.1 Local control strategyProportional-Derivative
control
t23 U6.2938 M0.585
c.f. Fyhrie and Schaffler, 1995
283.1 Local control strategy Proportional-Integral-
Derivative control
t15 U6.4338 M0.569
c.f. Davidson et al., 2004
293.2 PerformanceInitial design
M 1.0
M 0.5
t21 U6.4502 M0.568
t15 U6.4338 M0.569
M 0.0
M 0.5
t21 U6.4668 M0.568
t17 U6.4350 M0.568
303.2 PerformanceNeighborhood
t16 U6.8073 M0.529
t15 U6.4338 M0.569
t13 U6.3511 M0.574
t16 U6.2062 M0.592
313.2 PerformanceBoundary conditions
t15 U6.4338 M0.569
t13 U6.3905 M0.584
323.2 PerformanceSize of the Design Domain
10x10
60x60
30x30
t18 U5.9944 M0.598
t20 U6.8146 M0.540
t15 U6.4338 M0.569
120x120
90x90
t17 U7.1222 M0.526
t16 U6.9805 M0.533
333.2 PerformanceTarget mechanical stimulus U
U0 0.005
U U0/5
U U0
t15 U6.4338 M0.569
t6 U4.4033 M0.920
U 5U0
U 10U0
t19 U13.1251 M0.274
t18 U18.5379 M0.193
343.2 PerformanceThe trade-off curve
353.2 PerformanceThe trade-off curve
Sigmund, 2001
364. ExamplesStructures in cantilever
11
31
21
41
374. ExamplesStructures in cantilever
t10 U10.3091 M0.483
t18 U11.0233 M0.551
t10 U12.9910 M0.189
385. ExamplesTrabecular bone (one-load case)
395. ExamplesTrabecular bone (two-load case)
406. Final Remarks
- HCA CA FEM, using local control rules.
- HCA models are suitable to simulate biological
structural optimization process. - HCA local control rules need to be tuned
according to biological evidence. - Time effects, like mineralization of bone tissue,
can be included in the model. - A probabilistic HCA model can be implemented to
simulate non-deterministic process in bone
remodeling. - The time scales are still a concern for HCA model.
41Thanks