Cedar movie - PowerPoint PPT Presentation

About This Presentation
Title:

Cedar movie

Description:

includes spatial point process. Y(x,y,t), 0 x X, 0 y Y, 0 t T spatial-temporal ... Quadratic instantaneous. Y(t) = X(t)2. X(t) = cos. t Y(t) = (1 cos 2 t)/2 ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 27
Provided by: Davi834
Category:

less

Transcript and Presenter's Notes

Title: Cedar movie


1
Cedar movie
2
Cedar Fire - 2003
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
Operations/systems.
Processes so far considered Y(t), 0lttltT
time series using Dirac
deltas includes point process Y(x,y),
0ltxltX, 0ltyltY image includes
spatial point process Y(x,y,t), 0ltxltX,
0ltyltY, 0lttltT spatial-temporal
includes trajectory and more
7
Manipulating process data All functions, so can
expect things computed and parameters to be
functions also Operations that are common in
nature Differential equations - Newton's
Laws Systems - input and (unique) output
box and arrow diagrams
8
Operations. carry one function/process into
another
Domain D X(t), t in Rp or Zp Map A.
notice Range Y(.) AX(.), X in D
X, Y may be vector-valued Examples. running
mean X(t-1)X(t)X(t1)/3 running median
Y(x,y) medianX(u,v), u x,x?1, vy?1
gradient Y(x,y) ? X(x,y) level crossings
Y(t) X'(t)?(X(t)-a) t.s. gt p.p.
9
Time invariance.
t in Z or R translation operator Tu X(.)
X(.u) Tu X(t) X(tu), for all t operator
A is time invariant if ATu X(t)
AX(tu), for all t,u Examples. previous
slide Non example. Y(t) sup0ltsltt X(s)
10
Operator A. is linear if Aa1X1 a2X2
a1AX1 a2AX2 a's in R, X's in
D a, X can be complex-valued complex numbers
zu iv, i sqrt(-1) z sqrt(u2 v2) ,
arg ztan-1 (Re(z),Im(z)) De Moivre expix
cos x i sin x
11
Linear time invariant A.. filter
Lemma. If e(t)expi?t, t in Z in DA, then
there is A(?) with Ae(t)
expi?tA(?) A(.) transfer function notice (
) arg(A(.)) phase A(.)
amplitude Example If Y(t) AX(t) ?u
a(u)X(t-u), u in Z A(?) ?u a(u)
exp-i?t FT u lag AX
convolution
12
Proof.
e?(t) exp(i?t) Ae(tu) AT e(t)
definition Aexpi?ue(t) de
finition expi?uAe(t) linear
Ae(u) expi?uAe(0) set t 0 A(?)
Ae?(0)
13
Properties of transfer function.
A(?2?) A(?), expi2?1 fundamental domain
for ? 0,?
14
Vector case. a is s by r Y(t) ?
a(u)X(t-u) A(?) ? a(u)
exp-i?u Continuous. Y(t) ? a(u)X(t-u)du
A(?) ? a(u) exp-i?u
du Spatial. Y(x,y) ? a(u,v)X(x-u,y-v)
A(?,?)?u,v a(u,v) exp-i(?u?v) Point
process. Y(t) ? a(u)dN(t-u) ? a(t-?j )
A(?) ? a(u) exp-i?udu
15
Algebra (of manipulating linear time invariant
operators).
Linear combination AX BX A(?)
B(?) ? a(t) b(t) successive
application BAX B(?)A(?) ?
b?a(t) inverse A-1X B(?) A(?)-1
16
Impulse response. Dirac delta ?(u), u in R
Kronecker delta ?u 1 if u0, 0
otherwise A?(t) a(t) impulse
response a(u) 0, tlt0 realizable
17
Examples.
Running mean of order 2M1. Y(t) ? M-M
X(tu)/(2M1)
Difference Y(t) X(t) - X(t-1) A(?)
2i sin(?/2) exp-i?/2 A(?)
18
Bandpass Lowpass Smoothers
19
Nonlinear.
Quadratic instantaneous. Y(t) X(t)2
X(t) cos ?t Y(t) (1 cos 2?t)/2
Yariv "Quantum Electronics"
20
(No Transcript)
21
Quadratic, time lags (Volterra) Y(t) ?
a(u)X(t-u) ?u,v b(u,v) X(t-u)
X(t-v) quadratic transfer function B(?,?)
?u,v b(u,v) exp-i(?ui?v)
22
Transforms.
Fourier. dT(?) ?t Y(t) exp-i?t ?
real ? Y(t) exp-i?tdt Laplace.
LT(p) ?t?0 Y(t) exp-pt p complex
? Y(t) exp-ptdt z. ZT(z)
?t?0 Y(t)zt z complex
23
Hilbert. Y(t) ?u a(u) X(t-u)
a(u) 2/?u, u odd 0, u even
?u ?tX(u)/(t-u)du cos ?t gt sin
?t Radon. Y(x,y) R(?,?) ?
Y(x,??x)dx Short-time/running Fourier.
Y(t) ? w(t-u) exp-i?u)X(u)du Gabor
w(u) exp-ru2
24
Wavelet. eg. w(t) w0(t) exp-i?t Walsh.
??? (t) Y(t) dt ?n(t) Walsh function
?s(t) ?s(t)?t(s) Chirplet. C(?,?)
? Y(t)exp-i(??t)tdt
25
Use of A(?,?).
Suppose X(x,y) ? ?j,k ?jk expi(?j x ?k
y) Y(x,y) AX(x,y) ? ?j,k
A(?j,?k) ?jk expi(?j x ?k y) e.g. If A(?,?)
1, ? ?0, ??0 ? ?
0 otherwise Y(x,y) contains only
these terms Repeated xeroxing
26
Chapters 2,3 in D. R. Brillinger "Time Series
Data Analysis and Theory". SIAM paperback
Write a Comment
User Comments (0)
About PowerShow.com