Mathematics 252 Chemistry 302 Mathematics for Chemistry II - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Mathematics 252 Chemistry 302 Mathematics for Chemistry II

Description:

Matrix eigenvalue-eigenvector problems. Math 252 Chem 302. Term Tests. week of Feb 11 15 ... Many problems in chemistry well suited for solution on a ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 21
Provided by: drdale1
Category:

less

Transcript and Presenter's Notes

Title: Mathematics 252 Chemistry 302 Mathematics for Chemistry II


1
Mathematics 252 - Chemistry 302Mathematics for
Chemistry II
2
Math 252 Chem 302
  • Instructor Dr. D. KeefeOffice TC-107 / TC-137
    (laboratory)Phone 563-1185 / 1462
    (laboratory)email Dale_Keefe_at_cbu.ca
  • Lectures T 1000 1115 am Th 830 945
    am
  • Laboratories TBA.
  • Mark Structure
  • Laboratories / Assignments 40
  • Term Tests 30
  • Final Exam 30

3
Math 252 Chem 302
  • Syllabus
  • Solutions of nonlinear equations
  • Solutions of systems of linear equations (matrix
    inversion)
  • Interpolation / extrapolation
  • Integration
  • Least squares regression
  • linear
  • nonlinear
  • Differential equations
  • Matrix eigenvalue-eigenvector problems

4
Math 252 Chem 302
  • Term Testsweek of Feb 11 15week of Mar 17
    21
  • must be written on the day they are scheduled.
  • doctors certificate or other supporting document
    to be eligible for a rewrite.
  • Otherwise a mark of 0 (zero) will be given for
    the test
  • University closed ? test next scheduled lecture
    period.

5
Math 252 Chem 302
  • Supplementary ExaminationSupplementary
    Examinations are NOT available for this course.
  • Office HoursTBA
  • WebsiteAssignments, copies of lecture
    transparencies and other course materials are
    posted athttp//faculty.cbu.ca/dkeefe/chem302

6
Introduction
  • Many problems in chemistry well suited for
    solution on a microcomputer
  • Kinetics
  • Quantum chemistry
  • Spectroscopy
  • Complexity
  • Repetition

7
Introduction
  • Use
  • Maple
  • Commercial Mathematics software
  • Microsoft Excel
  • Spreadsheet with some numerical applications
  • C
  • High-level programming language
  • Write our own code
  • Review Math 187 notes

8
Number Systems
  • Understand how a computer stores information
  • Decimal
  • 10 integers (0,1,2,3,4,5,6,7,8,9)
  • Decimal point
  • positive () negative (-) signs
  • Digits to left of decimal point represent
    successive positive powers of ten
  • Digits to right of decimal point represent
    successive negative powers of ten
  • 1234.56 ?1103 2 102 3 101 4 100 5
    10-1 6 10-2
  • Not practical for computers based on binary
    states (on/off)

9
Number Systems
  • Binary Base 2
  • 2 integers (0,1)
  • Binary point
  • positive () negative (-) signs
  • Digits to left of binary point represent
    successive positive powers of two
  • Digits to right of binary point represent
    successive negative powers of two
  • (1011.01)2 ?123 022 121 120 02-1
    12-2

10
Number Systems
  • Octal Base 8
  • 8 integers (0,1,2,3,4,5,6,7)
  • Octal point
  • positive () negative (-) signs
  • Digits to left of octal point represent
    successive positive powers of eight
  • Digits to right of octal point represent
    successive negative powers of eight
  • (1234.56)8 ?183 282 381 480 58-1
    68-2

11
Number Systems
  • Hexadecimal Base 16
  • 16 integers (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
  • Hexadecimal point
  • positive () negative (-) signs
  • Digits to left of hexadecimal point represent
    successive positive powers of sixteen
  • Digits to right of hexadecimal point represent
    successive negative powers of sixteen
  • (1AF4.C6)16 ?1163 A162 F161 4160
    C16-1 616-2

12
Number Systems
  • Decimal Binary Octal Hexadecimal
  • 0 0 0 0
  • 1 1 1 1
  • 2 10 2 2
  • 3 11 3 3
  • 4 100 4 4
  • 5 101 5 5
  • 6 110 6 6
  • 7 111 7 7
  • 8 1000 10 8
  • 9 1001 11 9
  • 10 1010 12 A
  • 11 1011 13 B
  • 12 1100 14 C
  • 13 1101 15 D
  • 14 1110 16 E
  • 15 1111 17 F

13
Number Systems
  • Decimal Binary Octal Hexadecimal
  • 16 10000 20 10
  • 17 10001 21 11
  • 18 10010 22 12
  • 19 10011 23 13
  • 20 10100 24 14
  • 21 10101 25 15
  • 22 10110 26 16
  • 23 10111 27 17
  • 24 11000 30 18
  • 25 11001 31 19
  • 26 11010 32 1A
  • 27 11011 33 1B
  • 28 11100 34 1C
  • 29 11101 35 1D
  • 30 11110 36 1E
  • 31 11111 37 1F

14
Converting between number systems
  • Binary, Octal, Hexadecimal to Decimal
  • Expand the powers of 2,8 or 16 into powers of 10
  • (1011.01)2
  • (123 022 121 120 02-1 12-2)2
  • (18 04 12 11 0/2 1/4)10
  • (11.25)10

15
Converting between number systems
  • (1234.56)8
  • (183 282 381 480 58-1 68-2)8
  • (1512 264 38 41 5/8 6/64)10
  • (668.71875)10
  • (1AF4.C6)16
  • (1163 A162 F161 4160 C16-1
    616-2)16
  • (14096 10256 1516 41 12/16
    6/256)10
  • (6900.7734375)10

16
Converting between number systems
  • Decimal to Binary, Octal, Hexadecimal
  • Convert the integer and fraction part separately
  • Integer successively divide by 2, 8 or 16
    keeping track of remainders
  • Fraction successively multiply by 2, 8 or 16
    keeping track of integer part

17
Converting between number systems
18
Converting between number systems
19
Converting between number systems
20
Converting between number systems
  • Between Binary, Octal, Hexadecimal
  • 823 (use 3 binary digits for one octal digit)
  • 1624 (use 4 binary digits for one hexadecimal
    digit)
Write a Comment
User Comments (0)
About PowerShow.com