AWEAR 2.0 System: Omnidirectional AudioVisual Data Acquisition and Processing

1 / 20
About This Presentation
Title:

AWEAR 2.0 System: Omnidirectional AudioVisual Data Acquisition and Processing

Description:

AWEAR 2.0 System: Omnidirectional AudioVisual Data Acquisition and Processing –

Number of Views:269
Avg rating:3.0/5.0
Slides: 21
Provided by: hav3
Category:

less

Transcript and Presenter's Notes

Title: AWEAR 2.0 System: Omnidirectional AudioVisual Data Acquisition and Processing


1
AWEAR 2.0 System Omni-directionalAudio-Visual
Data Acquisition and Processing
  • Michal Havlena 1, Andreas Ess 2, Wim Moreau 3,
    Akihiko Torii 1,Michal Jancoek 1, Tomá Pajdla
    1, and Luc Van Gool 2,3

1)
2)
3)
2
AWEAR 2.0 System
3
AWEAR 2.0 Components
  • 3 D2703-S Mini-ITX motherboard
  • AMD mobile Turion 64 X2 Dual Core
  • 2 AVT Stingray F-201C camera
  • 2Mpixel, 14fps, IEEE-1394b
  • 2 Fujinon FE185CO86HA1 lens
  • fish-eye with 150114 FOV
  • Focusrite Saffire Pro soundcard
  • 10-channel, 96kHz
  • 4 T.Bone EM700 microphone
  • condenser microphone, -42dB

4
AWEAR 2.0 Components
  • Power distribution unit
  • 4 7.5Ah 12V lead-gel battery
  • Hardware trigger
  • synchronizing cameras and audio
  • Gigabit Ethernet connection
  • Wi-Fi remote operation
  • Rigid frame backpack
  • connectors, cables,
  • Software
  • Ubuntu, recording SW

5
AWEAR 2.0 Schema
  • VIDEO subsystem
  • 2 PC, 2 cameras
  • AUDIO subsystem
  • 1 PC, 4 microphones
  • POWER subsystem
  • 4 batteries
  • TRIGGER

6
Camera Calibration
  • Equi-angular projection model Micusik PAMI06
  • transformation between rays and points
  • calibration target box

7
Wide Baseline SfM
  • Camera pose estimation
  • Keyframe selection
  • sufficient dominant apical angle Torii CVPR08
  • Trajectory from keyframes
  • chaining epipolar geometries Torii PSIVT09
  • Gluing non-keyframe images
  • camera resectioning using the 3D point cloud
  • Interpolating remaining images

t
8
Trajectory from Keyframes
  • SfM pipeline
  • Feature region detection description
  • MSER Matas IVC04, SURF Bay CVIU08
  • Descriptor matching by FLANN Muja VISAPP09
  • Epipolar geometry by PROSAC Chum CVPR05
  • soft-voting for epipole position Torii
    VISAPP08
  • 5-point minimal problem Nister PAMI04

9
Trajectory from Keyframes
  • Chaining epipolar geometries
  • fixing the scale using 1 point correspondence
  • cone intersection test
  • L1-triangulation feasibility Kahl ICCV05

10
Image Sequence Stabilization
  • Fixing gravity vector direction w.r.t. the first
    camera
  • use known camera pose to rotate
  • rectify to cylindrical projection

n o n - c e n t r a l
c e n t r a l
11
Image Sequence Stabilization
w i t h s t a b i l i z a t i o n
w / o s t a b i l i z a t i o n
o r i g i n a l i m a g e
12
High-level Visual Data Processing
  • Pedestrian tracking Ess CVPR08
  • Detection by classification
  • HOG Dalal CVPR05
  • Multi-hypothesis tracking
  • TODO Action recognition
  • Dense 3D reconstruction Jancosek CMP-TR08
  • 3D mesh reconstruction
  • independently for each camera
  • Fusion of reconstructed meshes
  • TODO Obstacle detection

13
Pedestrian Tracking
  • Obtaining space-time pedestrian trajectories
  • use known camera trajectory (from SfM)
  • detect pedestrians in each frame
  • generate an overcomplete set of possible
    explanations
  • select the best mutually consistent subset
  • Trajectory model
  • Motion model constant velocity (EKF)
  • Appearance model color histogram (HSV)

14
Pedestrian Tracking
  • Track hypotheses generation
  • Parallel generation of new and alternative
    explanations
  • detections from next timeslot
  • independent search down the timeline
  • finding new trajectories
  • Extension of existing trajectories
  • predicting selected hypotheses
  • greedy assignment
  • Global optimization
  • favouring explanations with fewer trajectories

15
Dense 3D Reconstruction
  • Obtaining a candidate 3D mesh for each camera
  • 3D seeds
  • Harris on a grid Furukawa CVPR07, guided
    matching
  • Growing
  • online orientation refinement using PCA based
    plane fitting
  • Filtering
  • MRF based filtering approach Campbell ECCV08
  • Final mesh reconstruction (Meshing)
  • part of a mesh is accepted if at least 3 cameras
    agree
  • no further candidate mesh reconstruction for
    places contained in the final mesh already

16
Dense 3D Reconstruction
17
Experimental Results
  • PEDCROSS data set
  • 228 frames at 12fps

18
Experimental Results
  • Stabilization and pedestrian tracking

19
Experimental Results
/
20
Conclusions
  • Wearable audio-visual sensor platform
  • running cognitive supportive applications for
    elderly
  • Current embodiment
  • capturing egocentric audio-visual sequences
  • running state-of-the-art computer vision methods
    off-line
  • speed-up needed for actual cognitive feedback
Write a Comment
User Comments (0)
About PowerShow.com