Title: Largescale Structure Simulations
1Large-scale Structure Simulations
A.E. Evrard, R Stanek, B Nord (Michigan) E.
Gaztanaga, P Fosalba, M. Manera (Barcelona) A.
Kravtsov (Chicago) P.M Ricker (UIUC/NCSA) R.
Wechsler (Stanford) D. Weinberg (OSU)
2core science areas
- non-linear evolution of the matter density
- P(k) for weak lensing, BAO
- halo characterization for clusters, BAO, weak
lensing - gas dynamic simulations of clusters
- g(ySZ , Ngal, Mhalo,z) form of
observable-mass relation - sensitivity to galaxy/AGN physics
- mock sky surveys of galaxies and clusters
- SZ optical cluster finding test
self-calibration - multiple techniques to model galaxy formation and
evolution - empirical halo occupation, ADDGALS
- first principle SAMs, direct gas dynamic
- 100 sq deg now, several x 1000 sq deg by mid-2007
3methods and resources
- mpi-based large-scale structure codes
- GADGET tree-PM N-body Lagrangian hydro (SPH)
- ART tree N-body Eulerian, adaptive-grid hydro
- FLASH PM N-body Eulerian, adaptive-grid hydro
- compute resources
- Marenostrum _at_ BCN (104 cpus,106 hours 100 Tb)
- NCSA allocations of cycles and storage
- local compute clusters (100 cpus) and storage
(10 Tb) - each billion particle run generates 10Tb of
output - NASA AISR proposal to grid-enable this work
(follow DM lead)
4Millennium Simulation (MS)
Springel et al 2005
L500 Mpc/h ?m0.25, ?L0.75, h0.73, s80.9
1010 particles mp8.7e8 Msun/h
halo/sub-halo catalogs
semi-analytic galaxies
test red-sequence cluster finding
5workflow view of galaxy formation
star / SMBH formation
6galaxy samples
Croton et al 2006
2 galaxy types in a halo central - accrete gas
form stars satellite - no gas accretion or
star formation
red sequence in halos w/ Ngal 4 width of rz
color grows with redshift factor 2 wider than
observed
7halo occupation of red-sequence galaxies
z 0.41
regular behavior slope slightly steeper than 1
no funny dark clusters
8apply simple cluster finder to volume projections
- Aim lower-bound on blending due to supercluster
projections - use periodic BCs to re-center volume around
each galaxy - - apply linear color gradient to fore/background
- simple cluster finder based on mean sky density
- (parallels 3D algorithm used to define halos)
- for brightest galaxy
- re-center volume on galaxy
- apply line-of-sight color gradient for
z-evolution - grow disc until mean RS number density
threshold is reached - assign group members if NgalNmin (4)
- repeat for next available (non-assigned) galaxy
rz color
redshift
9(No Transcript)
10(No Transcript)
11cluster classification based on halo matching
fbest Ngal(halo) / Ngal(cluster) for the
halo contributing the largest number of
galaxies 2 classes clean fbest 0.5
(plurality is majority) blended
fbest lt 0.5 (plurality is minority)
12cluster richness-mass relation
red sequence cluster finding recovers well the
intrinsic halo occupation clean fbest
0.5 blended fbest lt 0.5
halo
cluster
13conditional likelihood of halo mass at fixed
richness
halos
clusters
14conditional likelihood of halo mass at fixed
richness
halos
clean clusters
blended clusters
Next step test whether SZ signatures will remove
blends consider bi-modal likelihood
p(MNgal) ?
15MS w/ gas halo space density
F. Pearce, L. Gazzola (Nottingham) Virgo
Consortium collaborators R. Stanek, B. Nord
(Umich)
M200 mass function run 0 open DM only filled
DM gas
5x108 particles mdm1.4x1010 Msun/h mgas2.9x109
Msun/h
3 simulations 0. gravity only 1. cooling
heating I 2. cooling heating II
Evrard et al (2002) prediction
16MS w/ gas scaling relations
gas mass fraction
thermal SZ
gravity only coolheat 1
gas temperature
DM velocity dispersion
17MS w/ gas covariance of observables
high Lx systems are likely to be gas rich
correl. coeff. r 0.5
deviation in gas mass fraction
deviation in X-ray luminosity
18MS galaxies match bK band LFs