Title: COM328M2: Algorithms and Data Structures
1COM328M2 Algorithms and Data Structures
- Dr Zumao Weng
- http//www.infm.ulst.ac.uk/zumao/teaching/COM328M
2 - School of Computing and Intelligent Systems
- University of Ulster at Magee
- 9-2-2009
2Chapter 3 Recursion and Linked List
3Recursion
- In some problems, it may be natural to define the
problem in terms of the problem itself. - Recursion is useful for problems that can be
represented by a simpler version of the same
problem. - Example the factorial function
- 6! 6 5 4 3 2 1
- We could write
- 6! 6 5!
4Example 1 Factorial function
- In general, we can express the factorial function
as follows - n! n (n-1)!
- Is this correct? Well almost.
- The factorial function is only defined for
positive integers. So we should be a bit more
precise - n! 1 (if n is equal to 1)
- n! n (n-1)! (if n is larger than 1)
-
5Factorial function
- The C equivalent of this definition
- int fac(int numb)
- if(numblt1)
- return 1
- else
- return numb fac(numb-1)
-
- Recursion means that a function calls itself
6Factorial function
- Assume the number typed is 3, that is, numb3.
fac(3)
3 lt 1 ? No. fac(3) 3 fac(2)
fac(2) 2 lt 1 ? No. fac(2) 2 fac(1)
fac(1) 1 lt 1 ? Yes. return 1
int fac(int numb) if(numblt1) return
1 else return numb fac(numb-1)
fac(2) 2 1 2 return fac(2)
fac(3) 3 2 6 return fac(3)
fac(3) has the value 6
7Factorial function
- For certain problems (such as the factorial
function), a recursive solution often leads to
short and elegant code. Compare the recursive
solution with the iterative solution -
-
Iterative solution -
-
int fac(int numb)
- int product1
- while(numbgt1)
- product numb
- numb--
-
- return product
-
- Recursive solution
- int fac(int numb)
- if(numblt1)
- return 1
- else
- return numbfac(numb-1)
-
8Recursion
- To trace recursion, recall that function calls
operate as a stack the new function is put on
top of the caller -
- We have to pay a price for recursion
- calling a function consumes more time and memory
than adjusting a loop counter. - high performance applications (graphic action
games, simulations of nuclear explosions) hardly
ever use recursion. - In less demanding applications recursion is an
attractive alternative for iteration (for the
right problems!)
9Recursion
- If we use iteration, we must be careful not to
create an infinite loop by accident - for ( int incr 1 incr ! 10 incr 2)
- . . .
-
- int result 1
- while (result gt0)
- . . .
- result
-
Oops!
Oops!
10Recursion
- Similarly, if we use recursion we must be
careful not to create an infinite chain of
function calls - int fac( int numb)
- return numb fac(numb-1)
-
- Or
- int fac( int numb)
- if (numblt1)
- return 1
- else
- return numb fac( numb1)
-
Oops! No termination condition
Oops!
11Recursion
- We must always make sure that the recursion
bottoms out - A recursive function must contain at least one
non-recursive branch. - The recursive calls must eventually lead to a
non-recursive branch.
12Recursion
- Recursion is one way to decompose a task into
smaller subtasks. At least one of the subtasks is
a smaller example of the same task. - The smallest example of the same task has a
non-recursive solution. - Example The factorial function
- n! n (n-1)! and 1! 1
13Example 2 Fibonacci numbers
- Fibonacci numbers
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- where each number is the sum of the preceding
two. - Recursive definition
- F(0) 0
- F(1) 1
- F(number) F(number-1) F(number-2)
14(No Transcript)
15Example 3 Fibonacci numbers
- //Calculate Fibonacci numbers using recursive
function. - //A very inefficient way, but illustrates
recursion well - int fib(int number)
-
- if (number 0) return 0
- if (number 1) return 1
- return (fib(number-1) fib(number-2))
-
- int main() // driver function
- int inp_number
- cout ltlt "Please enter an integer "
- cin gtgt inp_number
- cout ltlt "The Fibonacci number for "ltlt inp_number
- ltlt " is "ltlt fib(inp_number)ltltendl
- return 0
16(No Transcript)
17Trace a Fibonacci Number
int fib(int num) if (num 0) return 0 if
(num 1) return 1 return
(fib(num-1)fib(num-2))
- Assume the input number is 4, that is, num4
- fib(4)
- 4 0 ? No 4 1? No.
- fib(4) fib(3) fib(2)
- fib(3)
- 3 0 ? No 3 1? No.
- fib(3) fib(2) fib(1)
- fib(2)
- 2 0? No 21? No.
- fib(2) fib(1)fib(0)
- fib(1)
- 1 0 ? No 1 1? Yes.
- fib(1) 1
- return fib(1)
-
-
18Trace a Fibonacci Number
fib(0) 0 0 ? Yes.
fib(0) 0 return fib(0) fib(2)
1 0 1 return fib(2) fib(3) 1
fib(1) fib(1) 1 0 ? No 1 1?
Yes fib(1) 1 return fib(1)
fib(3) 1 1 2 return fib(3)
19Trace a Fibonacci Number
- fib(2)
- 2 0 ? No 2 1? No.
- fib(2) fib(1) fib(0)
- fib(1)
- 1 0 ? No 1 1? Yes.
- fib(1) 1
- return fib(1)
- fib(0)
- 0 0 ? Yes.
- fib(0) 0
- return fib(0)
- fib(2) 1 0 1
- return fib(2)
- fib(4) fib(3) fib(2)
- 2 1 3
- return fib(4)
20Fibonacci number w/o recursion
- //Calculate Fibonacci numbers iteratively
- //much more efficient than recursive solution
- int fib(int n)
-
- int fn1
- f0 0 f1 1
- for (int i2 ilt n i)
- fi fi-1 fi-2
- return fn
-
21Example 3 Binary Search
- Search for an element in an array
- Sequential search
- Binary search
- Binary search
- Compare the search element with the middle
element of the array - If not equal, then apply binary search to half of
the array - (if not empty) where the search element would
be.
22Binary Search w/o recursion
- // Searches an ordered array of integers
- int bsearch(const int data, // input array
- int size, // input array size
- int value // input value to find
- ) // output if
found,return - // index otherwise,
return -1 - int first, last, upper
- first 0
- last size - 1
- while (true)
- middle (first last) / 2
- if (datamiddle value)
- return middle
- else if (first gt last)
- return -1
- else if (value lt datamiddle)
- last middle - 1
- else
23Recursion General Form
- How to write recursively?
- int recur_fn(parameters)
- if(stopping condition)
- return stopping value
- // other stopping conditions if needed
- return function of recur_fn(revised
- parameters)
-
-
24Example 4 exponential function
- How to write exp(int numb, int power)
recursively? - int exp(int numb, int power)
- if(power 0)
- return 1
- return numb exp(numb, power -1)
-
25Example 5 number of zero
- Write a recursive function that counts the number
of zero digits in an integer - zeros(10200) returns 3.
- int zeros( int numb)
- if (numb0) // 1 digit
(zero/non-zero) - return 1 // bottom out.
- else if (numb lt 10 numb gt -10)
- return 0
- else // gt 1 digits recursion
- return zeros(numb/10) zeros(numb10)
-
zeros(10200) zeros(1020)
zeros(0) zeros(102)
zeros(0)
zeros(0) zeros(10) zeros(2)
zeros(0) zeros(0) zeros(1) zeros(0)
zeros(2) zeros(0) zeros(0)
26Example 6 Towers of Hanoi
- Only one disc could be moved at a time
- A larger disc must never be stacked above a
smaller one - One and only one extra needle could be used for
intermediate storage of discs
see applet
27Towers of Hanoi
- void hanoi(int from, int to, int num)
-
- int temp 6 - from - to //find the
temporary - //storage column
- if (num 1)
- cout ltlt "move disc 1 from " ltlt from
- ltlt " to " ltlt to ltlt endl
-
- else
- hanoi(from, temp, num - 1)
- cout ltlt "move disc " ltlt num ltlt " from "
ltlt from - ltlt " to " ltlt to ltlt endl
- hanoi(temp, to, num - 1)
-
28Towers of Hanoi
- int main()
- int num_disc //number of discs
-
- cout ltlt "Please enter a positive number (0 to
quit)" - cin gtgt num_disc
-
- while (num_disc gt 0)
- hanoi(1, 3, num_disc)
- cout ltlt "Please enter a positive number
" - cin gtgt num_disc
-
- return 0
-
29 30List Overview
- Linked lists
- Abstract data type (ADT)
- Basic operations of linked lists
- Insert, find, delete, print, etc.
- Variations of linked lists
- Circular linked lists
- Doubly linked lists
31Linked Lists
?
Head
- A linked list is a series of connected nodes
- Each node contains at least
- A piece of data (any type)
- Pointer to the next node in the list
- Head pointer to the first node
- The last node points to NULL
node
data
pointer
32A Simple Linked List Class
- We use two classes Node and List
- Declare Node class for the nodes
- data double-type data in this example
- next a pointer to the next node in the list
class Node public double data //
data Node next // pointer to next
33A Simple Linked List Class
- Declare List, which contains
- head a pointer to the first node in the list.
- Since the list is empty initially, head is
set to NULL - Operations on List
- class List
- public
- List(void) head NULL // constructor
- List(void) // destructor
- bool IsEmpty() return head NULL
- Node InsertNode(int index, double x)
- int FindNode(double x)
- int DeleteNode(double x)
- void DisplayList(void)
- private
- Node head
-
34A Simple Linked List Class
- Operations of List
- IsEmpty determine whether or not the list is
empty - InsertNode insert a new node at a particular
position - FindNode find a node with a given value
- DeleteNode delete a node with a given value
- DisplayList print all the nodes in the list
35Inserting a new node
- Node InsertNode(int index, double x)
- Insert a node with data equal to x after the
indexth elements. (i.e., when index 0, insert
the node as the first element - when index 1, insert the node after the
first element, and so on) - If the insertion is successful, return the
inserted node. - Otherwise, return NULL.
- (If index is lt 0 or gt length of the list,
the insertion will fail.) - Steps
- Locate indexth element
- Allocate memory for the new node
- Point the new node to its successor
- Point the new nodes predecessor to the new node
indexth element
newNode
36Inserting a new node
- Possible cases of InsertNode
- Insert into an empty list
- Insert in front
- Insert at back
- Insert in middle
- But, in fact, only need to handle two cases
- Insert as the first node (Case 1 and Case 2)
- Insert in the middle or at the end of the list
(Case 3 and Case 4)
37Inserting a new node
Try to locate indexth node. If it doesnt exist,
return NULL.
Node ListInsertNode(int index, double x) if
(index lt 0) return NULL int
currIndex 1 Node currNode head while
(currNode index gt currIndex)
currNode currNode-gtnext currIndex
if (index gt 0 currNode NULL) return
NULL Node newNode new Node newNode-gtdata
x if (index 0) newNode-gtnext head
head newNode else newNode-gtnext cur
rNode-gtnext currNode-gtnext newNode retur
n newNode
38Inserting a new node
Node ListInsertNode(int index, double x) if
(index lt 0) return NULL int
currIndex 1 Node currNode head while
(currNode index gt currIndex)
currNode currNode-gtnext currIndex
if (index gt 0 currNode NULL) return
NULL Node newNode new Node newNode-gtdata
x if (index 0) newNode-gtnext
head head newNode else
newNode-gtnext currNode-gtnext currNode-gtne
xt newNode return newNode
Create a new node
39Inserting a new node
Node ListInsertNode(int index, double x) if
(index lt 0) return NULL int
currIndex 1 Node currNode head while
(currNode index gt currIndex)
currNode currNode-gtnext currIndex
if (index gt 0 currNode NULL) return
NULL Node newNode new Node newNode-gtdata
x if (index 0) newNode-gtnext head
head newNode else newNode-gtnext cur
rNode-gtnext currNode-gtnext newNode retur
n newNode
Insert as first element
head
newNode
40Inserting a new node
Node ListInsertNode(int index, double x) if
(index lt 0) return NULL int
currIndex 1 Node currNode head while
(currNode index gt currIndex)
currNode currNode-gtnext currIndex
if (index gt 0 currNode NULL) return
NULL Node newNode new Node newNode-gtdata
x if (index 0) newNode-gtnext head
head newNode else newNode-gtnext cur
rNode-gtnext currNode-gtnext newNode retur
n newNode
Insert after currNode
currNode
newNode
41Finding a node
- int FindNode(double x)
- Search for a node with the value equal to x in
the list. - If such a node is found, return its position.
Otherwise, return 0.
int ListFindNode(double x) Node
currNode head int currIndex 1 while
(currNode currNode-gtdata ! x)
currNode currNode-gtnext currIndex
if (currNode) return currIndex return 0
42Deleting a node
- int DeleteNode(double x)
- Delete a node with the value equal to x from the
list. - If such a node is found, return its position.
Otherwise, return 0. - Steps
- Find the desirable node (similar to FindNode)
- Release the memory occupied by the found node
- Set the pointer of the predecessor of the found
node to the successor of the found node - Like InsertNode, there are two special cases
- Delete first node
- Delete the node in middle or at the end of the
list
43Deleting a node
int ListDeleteNode(double x) Node
prevNode NULL Node currNode head int
currIndex 1 while (currNode currNode-gtdata
! x) prevNode currNode currNode currNo
de-gtnext currIndex if
(currNode) if (prevNode) prevNode-gtnext
currNode-gtnext delete currNode else
head currNode-gtnext delete
currNode return currIndex return 0
Try to find the node with its value equal to x
44Deleting a node
int ListDeleteNode(double x) Node
prevNode NULL Node currNode head int
currIndex 1 while (currNode currNode-gtdata
! x) prevNode currNode currNode currNo
de-gtnext currIndex if (currNode) if
(prevNode) prevNode-gtnext currNode-gtnext
delete currNode else head currNod
e-gtnext delete currNode return
currIndex return 0
currNode
prevNode
45Deleting a node
int ListDeleteNode(double x) Node
prevNode NULL Node currNode head int
currIndex 1 while (currNode currNode-gtdata
! x) prevNode currNode currNode currNo
de-gtnext currIndex if (currNode) if
(prevNode) prevNode-gtnext currNode-gtnext
delete currNode else head currNod
e-gtnext delete currNode return
currIndex return 0
currNode
head
46Printing all the elements
- void DisplayList(void)
- Print the data of all the elements
- Print the number of the nodes in the list
void ListDisplayList() int num 0
Node currNode head while (currNode !
NULL) cout ltlt currNode-gtdata ltlt
endl currNode currNode-gtnext num
cout ltlt "Number of nodes in the list " ltlt num ltlt
endl
47Destroying the list
- List(void)
- Use the destructor to release all the memory used
by the list. - Step through the list and delete each node one by
one.
ListList(void) Node currNode head,
nextNode NULL while (currNode ! NULL)
nextNode currNode-gtnext // destroy the
current node delete currNode currNode nextNo
de
48Using List
6 7 5 Number of nodes in the list 3 5.0
found 4.5 not found 6 5 Number of nodes in the
list 2
result
int main(void) List list list.InsertNode(0,
7.0) // successful list.InsertNode(1, 5.0) //
successful list.InsertNode(-1, 5.0) //
unsuccessful list.InsertNode(0, 6.0) //
successful list.InsertNode(8, 4.0) //
unsuccessful // print all the elements list.Disp
layList() if(list.FindNode(5.0) gt 0) cout ltlt
"5.0 found" ltlt endl else cout ltlt "5.0 not
found" ltlt endl if(list.FindNode(4.5) gt 0) cout
ltlt "4.5 found" ltlt endl else cout ltlt "4.5 not
found" ltlt endl list.DeleteNode(7.0) list.Displ
ayList() return 0
49Variations of Linked Lists
- Circular linked lists
- The last node points to the first node of the
list - How do we know when we have finished traversing
the list? (Tip check if the pointer of the
current node is equal to the head.)
Head
50Variations of Linked Lists
- Doubly linked lists
- Each node points to not only successor but the
predecessor - There are two NULL at the first and last nodes
in the list - Advantage given a node, it is easy to visit its
predecessor. Convenient to traverse lists
backwards
?
?
Head
51Array versus Linked Lists
- Linked lists are more complex to code and manage
than arrays, but they have some distinct
advantages. - Dynamic a linked list can easily grow and shrink
in size. - We dont need to know how many nodes will be in
the list. They are created in memory as needed. - In contrast, the size of a C array is fixed at
compilation time. - Easy and fast insertions and deletions
- To insert or delete an element in an array, we
need to copy to temporary variables to make room
for new elements or close the gap caused by
deleted elements. - With a linked list, no need to move other nodes.
Only need to reset some pointers.