ECEN3713 Network Analysis Lecture - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

ECEN3713 Network Analysis Lecture

Description:

ECEN3713 Network Analysis. Lecture #25 11 April 2006. Dr. George Scheets ... x(t) and y(t) are similar but opposites. If evaluates = 0 ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 17
Provided by: okst
Category:

less

Transcript and Presenter's Notes

Title: ECEN3713 Network Analysis Lecture


1
ECEN3713 Network AnalysisLecture 25 11
April 2006Dr. George Scheets
  • Exam 2 Results Hi 89, Lo 30, Ave.
    60.23Standard Deviation 22.05
  • Quiz 8 Results Hi 9, Lo 2, Ave. 4.42
  • Standard Deviation 2.56
  • Read Chapter 16.1 - 16.4
  • Problems 15.26, 15.28, 15.31
  • Thursday's Quiz
  • Active Filters
  • Thursday's AssignmentProblems 15.58, 16.1, 16,2

2
ECEN3713 Network AnalysisLecture 27 18
April 2006Dr. George Scheets
  • Read Chapter 16.5 - 16.9
  • Problems 16.11, 16.13, 16.16
  • Thursday's Quiz
  • Chapter 16
  • Final Exam, Thursday, 4 May, 1400-1550
  • Comprehensive, Open Book Notes
  • Thursday's AssignmentProblems 16.23, 16.24,
    16.29, 16.33

3
ECEN3713 Network AnalysisLecture 29 25
April 2006Dr. George Scheets
  • Quiz 10 Results Hi 10, Lo 3, Ave. 5.65
  • Standard Deviation 2.47
  • Problems 16.34, 16.35, 16.41, 16.47
  • Final Exam
  • 200-350pm, Thursday, 4 May
  • Office Hours
  • Wednesday Office Hours 1400 - 1700 Thursday
    Office Hours 0930-1130, 1230-11400

4
ECEN3713 Network AnalysisLecture 30 27
April 2006Dr. George Scheets
  • Final Exam
  • 200-350pm, Thursday, 4 May
  • Office Hours
  • Wednesday Office Hours 1400 - 1700 Thursday
    Office Hours 0930-1130, 1230-11400

5
How do S-Domain poles zeroes affect frequency
domain plots?
  • Real Pole
  • Causes H(s) to "blow up"
  • Causes H(j?) to break down
  • Real Zero
  • Causes H(s) to be 0
  • Causes H(j?) to break up
  • Complex Conjugate Pole Pairs
  • Cause H(s) to "blow up" in two symmetrical
    places
  • Cause H(j?) to have bulges

6
Single Real Pole, Two Real Poles 1/(s3),
1/(s3)2
H(?)
7
Single Real Pole, Two Real Poles 1/(s3),
3/(s3)2
H(?)
Note 2nd order system has sharper
roll-off. Also, 3 dB break point has moved.
8
Complex Conjugate Poles, real 01/(s2 100)
1/(s j10)(s j10)
H(?)
9
Complex Conjugate Poles, real gt 01/(s2 4s
104) 1/(s 2 j10)(s 2 j10)
H(?)
10
Complex Conjugate Poles, real gt 01/(s2 10s
125) 1/(s 5 j10)(s 5 j10)
H(?)
11
Correlation
x(t) y(t) dt
  • Tells how "alike" x(t) and y(t) are
  • If evaluates positive
  • if x(t1) is positive, y(t1) tends to be positive
    t1 an arbitrary time
  • x(t) and y(t) are similar, i.e. there is a lot
    of y(t) in x(t)

12
Correlation
x(t) y(t) dt
  • If evaluates negative
  • if x(t1) is positive, y(t1) tends to be negative
    vice-versa
  • x(t) and y(t) are similar but opposites
  • If evaluates 0
  • x(t) y(t) are not related (uncorrelated)no
    predictability

13
Laplace Transform
8
F(s) f(t) e-st dt
0-
  • F(3) tells how alike f(t) and e-3t are
  • Over the time interval 0- to infinity

14
Fourier Transform
8
F(?) f(t) e-j?t dt
- 8
  • F(3) tells how alike f(t) and e-j3t are
  • Over the time interval -8 to 8

15
Fourier Series
T
an 2/T f(t) cos(n?ot) dt
0
  • a3 tells how alike f(t) and cos(3?ot) are
  • Over one period, T
  • 1/T average
  • 2 scaling factor to get power correct

16
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com