Topic 8: Optimisation of functions of several variables - PowerPoint PPT Presentation

About This Presentation
Title:

Topic 8: Optimisation of functions of several variables

Description:

Optimisation of functions of several variables. Economic Applications. 15. Example 1 ... Unconstrained Optimisation Functions of Several Variables ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 25
Provided by: lisafa6
Category:

less

Transcript and Presenter's Notes

Title: Topic 8: Optimisation of functions of several variables


1
Topic 8 Optimisation of functions of several
variables
  • Unconstrained Optimisation
  • (Maximisation and Minimisation)
  • Jacques (4th Edition) 5.4

2
Recall
Y
Max
Min
X
3

Max Y f (X) X
4
Re-writing in terms of total differentials.
5
(No Transcript)
6
Max Y f (X, Z)X, Z
  • Necessary Condition
  • dY fX.dX fZ.dZ 0
  • so it must be that
  • fX 0 AND fZ 0
  • Sufficient Condition
  • d2Y fXX.dX2 fZX dZ.dX fZZ.dZ2 fXZ .dXdZ
  • .and since fZX fXZ
  • d2Y fXX.dX2 fZZ.dZ2 2fXZ dX.dZ ?
  • gt0 for Min
  • lt0 for Max
  • Sign Positive Definite ? Min
  • Sign Negative Definite ? Max

7
(No Transcript)
8
Optimisation - A summing Up
9
Examples
10
(No Transcript)
11
Example 2
12
(No Transcript)
13
Example 3
14
Optimisation of functions of several variables
  • Economic Applications

15
Example 1
  • A firm can sell its product in two countries, A
    and B, where demand in country A is given by PA
    100 2QA and in country B is PB 100 QB.
  • Its total output is QA QB, which it can
    produce at a cost of
  • TC 50(QAQB) ½ (QAQB)2
  • How much will it sell in the two countries
    assuming it maximises profits?

16
Objective Function to Max is Profit.
? TR - TC PAQA PBQB TC PAQA (100
2QA)QA PBQB (100 QB) QB  ? 100QA 2QA2
100QB QB2 50QA
50QB ½ (QAQB)2 50QA 2QA2 50QB
QB2 ½ (QAQB)2 Select QA and QB to max ?
17
if ? 50QA 2QA2 50QB QB2 ½
(QAQB)2
  • F.O.C. d ? 0
  • ?QA 50 - 4QA ½ 2 (QAQB) 0
  • 50 - 5QA QB 0 (1)
  •  ?QB 50 - 2QB ½ 2 (QAQB) 0
  • 50 - 3QB QA 0 (2)
  • 50 - 5QA QB 50 - 3QB QA
  • ? 2QA QB
  • Thus, output at stationary point is (QA,QB)
    (71/7, 14 2/7 )

18
Check Sufficient conditions for Max d2? lt0
  • ?QA 50 - 5QA QB
  • ?QB 50 - 3QB QA
  • Then
  • ?QAQA 5 lt 0
  • ?QAQA. ?QBQB (?QAQB)2 gt0
  • (5 3)) (-1) 2 14 gt 0 Max
  •  So firm max profits by selling 71/7 units to
    country A and 14 2/7 units to country B.

19
Example 2
Profits and production Max ? PQ(L, K) wL -
rK L, K Total Revenue PQ Expenditure on
labour L wL Expenditure on Capital K rK Find
the values of L K that max ?
20
  • Necessary Condition d? 0
  • ?L PQL w 0 , MPL QL w/P
  • ?K PQK r 0 , MPK QK r/P
  •  
  • Sufficient Condition for a max, d2? lt0
  • So ?LL lt 0 AND (?LL.?KK - ?LK.?KL) gt 0

21
NOW, let Q K1/3L1/2, P 2, w 1, r 1/3 Find
the values of L K that max ??
  • Max ? 2 K1/3L1/2 L 1/3 K
  • L, K
  • Necessary condition for Max d? 0
  • (1) ?L K1/3L-1/2 1 0
  • (2) ?K 2/3 K-2/3 L1/2 1/3 0
  • Stationary point at L, K 4, 8
  •  note to solve, from eq1 L½ K1/3 .
    Substituting into eq2 then,
  • 2/3K 2/3K1/3 1/3. Re-arranging K 1/3 ½
    and so K 1/3 2 L½.
  • Thus, K 23 8. And so L 22 4.

22
For sufficient condition for a max, Check d2?
lt0 ?LL lt 0 (?LL.?KK - ?LK.?KL)gt0
  • ?L K1/3L-1/2 1
  • ?K 2/3 K-2/3 L1/2 1/3
  • ?LL -1/2K1/3L-3/2 lt 0 for all K and L
  •  ?KK 4/9 K5/3L½
  • ?KL ?LK 1/3K2/3L-½

23
  • ?LL.?KK (-1/2K1/3L-3/2 ).( 4/9 K5/3L½ )
  • 4/18 . K4/3L-1
  • ?KL2 (1/3K2/3L-½). (1/3K2/3L-½)
  • 1/9K4/3L-1
  •  Thus, ?LL.?KK gt ?KL.?LK since 4/18 gt 1/9
  •  
  • So, (?LL.?KK - ?KL.?LK) gt0 for all values of K
    L
  •  Profit max at stationary point
  • L, K 4, 8

24
Unconstrained Optimisation Functions of
Several Variables
  • Self-Assessment Questions on Website
  • Tutorial problem sheets
  • Pass Exam Papers
  • Examples in the Textbook
Write a Comment
User Comments (0)
About PowerShow.com