Title: Topic 8: Optimisation of functions of several variables
1 Topic 8 Optimisation of functions of several
variables
- Unconstrained Optimisation
- (Maximisation and Minimisation)
- Jacques (4th Edition) 5.4
2Recall
Y
Max
Min
X
3 Max Y f (X) X
4Re-writing in terms of total differentials.
5(No Transcript)
6Max Y f (X, Z)X, Z
- Necessary Condition
- dY fX.dX fZ.dZ 0
- so it must be that
- fX 0 AND fZ 0
- Sufficient Condition
- d2Y fXX.dX2 fZX dZ.dX fZZ.dZ2 fXZ .dXdZ
- .and since fZX fXZ
- d2Y fXX.dX2 fZZ.dZ2 2fXZ dX.dZ ?
-
- gt0 for Min
- lt0 for Max
- Sign Positive Definite ? Min
- Sign Negative Definite ? Max
7(No Transcript)
8Optimisation - A summing Up
9Examples
10(No Transcript)
11Example 2
12(No Transcript)
13Example 3
14Optimisation of functions of several variables
15Example 1
- A firm can sell its product in two countries, A
and B, where demand in country A is given by PA
100 2QA and in country B is PB 100 QB. - Its total output is QA QB, which it can
produce at a cost of - TC 50(QAQB) ½ (QAQB)2
- How much will it sell in the two countries
assuming it maximises profits?
16Objective Function to Max is Profit.
? TR - TC PAQA PBQB TC PAQA (100
2QA)QA PBQB (100 QB) QB ? 100QA 2QA2
100QB QB2 50QA
50QB ½ (QAQB)2 50QA 2QA2 50QB
QB2 ½ (QAQB)2 Select QA and QB to max ?
17if ? 50QA 2QA2 50QB QB2 ½
(QAQB)2
- F.O.C. d ? 0
- ?QA 50 - 4QA ½ 2 (QAQB) 0
- 50 - 5QA QB 0 (1)
- ?QB 50 - 2QB ½ 2 (QAQB) 0
- 50 - 3QB QA 0 (2)
- 50 - 5QA QB 50 - 3QB QA
- ? 2QA QB
- Thus, output at stationary point is (QA,QB)
(71/7, 14 2/7 )
18Check Sufficient conditions for Max d2? lt0
- ?QA 50 - 5QA QB
- ?QB 50 - 3QB QA
- Then
- ?QAQA 5 lt 0
- ?QAQA. ?QBQB (?QAQB)2 gt0
- (5 3)) (-1) 2 14 gt 0 Max
- So firm max profits by selling 71/7 units to
country A and 14 2/7 units to country B.
19Example 2
Profits and production Max ? PQ(L, K) wL -
rK L, K Total Revenue PQ Expenditure on
labour L wL Expenditure on Capital K rK Find
the values of L K that max ?
20- Necessary Condition d? 0
- ?L PQL w 0 , MPL QL w/P
- ?K PQK r 0 , MPK QK r/P
-
- Sufficient Condition for a max, d2? lt0
- So ?LL lt 0 AND (?LL.?KK - ?LK.?KL) gt 0
21NOW, let Q K1/3L1/2, P 2, w 1, r 1/3 Find
the values of L K that max ??
- Max ? 2 K1/3L1/2 L 1/3 K
- L, K
- Necessary condition for Max d? 0
- (1) ?L K1/3L-1/2 1 0
- (2) ?K 2/3 K-2/3 L1/2 1/3 0
- Stationary point at L, K 4, 8
- note to solve, from eq1 L½ K1/3 .
Substituting into eq2 then, - 2/3K 2/3K1/3 1/3. Re-arranging K 1/3 ½
and so K 1/3 2 L½. - Thus, K 23 8. And so L 22 4.
22For sufficient condition for a max, Check d2?
lt0 ?LL lt 0 (?LL.?KK - ?LK.?KL)gt0
- ?L K1/3L-1/2 1
- ?K 2/3 K-2/3 L1/2 1/3
- ?LL -1/2K1/3L-3/2 lt 0 for all K and L
- ?KK 4/9 K5/3L½
- ?KL ?LK 1/3K2/3L-½
23- ?LL.?KK (-1/2K1/3L-3/2 ).( 4/9 K5/3L½ )
- 4/18 . K4/3L-1
- ?KL2 (1/3K2/3L-½). (1/3K2/3L-½)
- 1/9K4/3L-1
- Thus, ?LL.?KK gt ?KL.?LK since 4/18 gt 1/9
-
- So, (?LL.?KK - ?KL.?LK) gt0 for all values of K
L - Profit max at stationary point
- L, K 4, 8
24Unconstrained Optimisation Functions of
Several Variables
- Self-Assessment Questions on Website
- Tutorial problem sheets
- Pass Exam Papers
- Examples in the Textbook