Title: The Minimum Cost Spanning Tree Problem
1Lecture 11
- The Minimum Cost Spanning Tree Problem
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10a
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19Correctness
20The Greedy Algorithm
21The Greedy Algorithm in Action
4
2
6
1
5
3
7
22The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
23The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
24The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
25The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
26The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
27The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
28The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
29The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
30The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
31The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
32The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
33The Greedy Algorithm in Action
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
34(No Transcript)
35(No Transcript)
36The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 1 2 3 4 5
4 7
10
8
10
8
2
4
6
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
36
37The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 1 4 3 4 5
4 7
10
8
10
8
2
4
6
2
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
3
7
15
15
11
37
38The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 1 4 3 4 5
4 5
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
7
5
3
7
15
15
11
38
39The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 1 4 5 4 5
4 5
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
7
3
5
3
7
15
15
11
39
40The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 1 4 4 4 4
4 4
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
5
7
3
5
3
7
15
15
11
40
41The Greedy Algorithm in Action
Node 1 2 3 4 5 6
7 First 4 4 4 4 4
4 4
10
8
10
8
2
4
6
4
2
6
35
35
15
15
1
1
1
25
25
20
20
30
30
17
17
21
21
11
40
40
3
5
7
3
5
3
7
15
15
11
41
42(No Transcript)
43(No Transcript)
44Correctness
- The cut-optimality Condition
45Prims algorithm
46Prims Algorithm in Action
10
8
4
4
6
2
2
6
35
15
1
1
25
20
30
17
21
11
40
5
7
3
5
3
7
15
The minimum cost arc from yellow nodes to green
nodes can be found by placing arc values in a
priority queue.
47Prims Algorithm in Action
8
10
4
4
6
2
2
2
6
35
35
15
1
25
1
30
20
17
21
11
40
5
7
3
5
3
7
15
48Prims Algorithm in Action
8
10
10
10
4
2
2
4
6
4
2
6
35
35
15
1
25
25
1
30
17
20
21
11
40
5
7
3
5
3
7
15
49Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
1
25
25
1
17
30
30
20
20
21
21
11
40
5
7
3
5
3
7
15
50Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
40
5
7
3
5
5
3
7
15
51Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
40
5
7
3
5
5
3
7
15
52Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
11
11
40
5
3
7
5
7
5
3
7
15
15
53Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
11
11
40
5
7
7
3
5
3
5
3
7
15
15
15
54Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
11
11
40
5
7
7
3
5
3
5
3
7
15
15
15
55Prims Algorithm in Action
8
8
8
10
10
10
4
2
2
4
6
6
4
2
6
35
35
15
15
15
1
25
25
1
17
30
30
17
20
20
21
21
11
11
11
40
5
7
7
3
5
3
5
3
7
15
15
15
56(No Transcript)
57(No Transcript)
58Correctness
59Sollins Algorithm
60Sollins Algorithm in Action
10
8
4
4
6
2
4
6
2
2
6
35
15
1
1
1
25
20
30
17
21
40
5
7
3
5
7
3
5
3
7
11
15
Treat all nodes as singleton components, and then
select the min cost arc leaving the component.
61Sollins Algorithm in Action
10
8
4
4
6
2
6
2
6
35
15
1
1
25
20
30
17
21
40
5
7
3
7
3
5
5
3
7
11
15
Find the min cost edge out of each component
62(No Transcript)
63Appendix Priority Queue
64Priority Queue
- A priority queue is a data structure for
maintaining a set of elements, each with an
associated value, called a key. - A min-priority queue supports the following
operations Insert(S,x), Minimum(S), - Extract-Min(S), Increase-Key(S,x,k).
- Min-Heap can be used for implementing
- min-priority queue.
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)