Title: REFINED DYNAMIC STALL MODEL FOR THE S809 AEROFOIL
1(No Transcript)
2(No Transcript)
3NACA 0012
Legend 1 Beddoes original 3rd generation
dynamic stall model 2 Leishmans modification in
reattachment
4Comparison of unsteady airloads
5(No Transcript)
6(No Transcript)
7(a)
(b)
- Pitch rates (NACA 0015)
- Staring angles (NACA 23012C)
- Aerofoils (NACA series)
(c)
8(No Transcript)
9Normal force reconstructions for ramp-down (Niven
et al)
Prediction with the Beddoes original model The
improved prediction
10Comparison of unsteady airloads
11(a)
(b)
- Pitch rates (NACA 0015)
- Staring angles (NACA 23012C)
- Aerofoils (NACA series)
(c)
12Pressure distributions for a ramp-down test of
the NACA 23012B (Green et al)
13(No Transcript)
14Onset criterion
15Force reconstructions for NACA0012 ramp-up test
(r 0.0145)
16Force reconstructions for S809 ramp-up test (r
0.0169)
17NORMAL FORCE
PRESSURE COEFFICIENT AT 2.5 CHORD
18Non-dimensional time delay constants for
reattachment processby Green et al
19?min0 Tr ?
20Linear fits for ?min
21Reconstructions for normal force
(a) r -0.005 (b) r -0.0119
NACA 0015, ramp-down
22CN reconstruction with different gradients during
the down-stroke for NACA0012 (oscillation, ?
0.075)
23NACA 23012B
? 0.076 ?0.101 Legend 1 Beddoes original
3rd generation dynamic stall model 2 Beddoess
return and Sheng et als onset criterion
21 3 Leishmans return and Sheng et als onset
criterion 4 New return and Sheng et als onset
criterion
24Force reconstructions for NACA0012 oscillatory
test (? 0.124 )
25Force reconstructions for S809 oscillatory test
(? 0.074 )
26(No Transcript)
27(No Transcript)
28(No Transcript)
29Forced transition model
30Comparison clean vs. sanded
Ramp-up test
Static case
31continued
32clean vs. sanded (continued)
33Ramp-up cases (r0.0098)
34Ramp-up cases (r0.0253)
35Oscillatory cases (?0.01)
36Oscillatory cases (?0.05)
37Oscillatory cases (?0.15)
38Glasgow University Rotor Aeromechanics
Laboratory Wind Turbine Aerodynamic Modelling
39Vorticity Transport Model (VTM)
- High fidelity wake modelling
- Solves vorticity transport equation gt
- Accurate wake structure and evolution by explicit
conservation of vorticity and control using flux
limiters - Efficient Weissinger-L lifting line blade
aerodynamic model - Rigid-blade dynamics modelled using a Lagrangian
formulation - Validated extensively for rotorcraft
applications - (Brown 2000, Brown et al. 2005 AIAA Journal)
40Turbine Wake Interaction using VTM
Contours of vorticity magnitude represent
wake Blue Rotor 1 Yellow Rotor 2 (downwind)
- Two 3-bladed turbines
- Operating in yawed crosswind conditions
- Tip speed ratio 4
- Constant pitch
- Constant rotor speed
41Turbine Lifting Performance Degradation
Wind direction
42CHRONoS
- Compressible High Resolution Overset Navier
Stokes Solver - Cell-vertex finite volume solver
- Structured overset meshes
- RANS turbulence modelling Spalart Allmaras
model - LES modelling Detached Eddy Simulation and wall
modelled LES - Steady / unsteady calculations, moving meshes,
deforming meshes - Extensively validated for rotor flows
performance, vortex evolution, dynamic stall,
blade vortex interaction etc.
43Flow Field in the Vicinity of a Blade Tip using
CHRONoS
Streamwise vorticity contours
44(No Transcript)
45(No Transcript)