Low temperature mean opacities for the carbonrich regime - PowerPoint PPT Presentation

1 / 66
About This Presentation
Title:

Low temperature mean opacities for the carbonrich regime

Description:

Tabulated mean opacities are available for a wide parameter range (=variety of applications) ... CN overestimated. Adding up opacity components. Advantages ... – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 67
Provided by: michaelt81
Category:

less

Transcript and Presenter's Notes

Title: Low temperature mean opacities for the carbonrich regime


1
Low temperaturemean opacities for the
carbon-rich regime
  • Michael T. Lederer, Bernhard Aringer
  • Department of Astronomy, University of Vienna

2
Opacity tables again?
  • Tabulated mean opacities are available for a wide
    parameter range (variety of applications)
  • high temperature OPAL (Iglesias Rogers
    1996),OP (Seaton et al. 1992)
  • electron-conduction opacities (e.g. Cassisi et
    al. 2007)
  • (very) low temperature molecules and
    dust(Alexander Ferguson 1994, Ferguson et al.
    2005), Sharp Burrows 2007 (BD giant
    planets),Freedman et al. 2007 (ultracool dwarfs
    ESP),
  • Everything there to fully cover AGB star models?
  • NO!
  • dredge-up
  • change of element abundances
  • metallicity AND metal composition changesC/O
    ratio, transition from oxygen-rich to
    carbon-rich!

3
Starting point
  • Marigo (2002) points out importance of molecular
    opacities at varying C/O ratio
  • Chemical equilibrium calculations plus
    approximation formulae (RMO per molecule) to
    estimate opacities
  • Important results
  • cooling of carbon-rich models
  • impact on mass-loss rates
  • possible consequences for duration of C-star
    phase, carbon yields, infrared colors etc.
  • Conclusion C/O solar tables inadequatefor
    AGB star modelling
  • Suggests calculation of opacity tables

4
Opacity calculations
  • COMA code (Aringer 2000)
  • continuous opacity, atomic lines (VALD), approx.
    108 molecular lines, dust opacity
  • Monochromatic opacities for
  • hydrostatic models (MARCS)
  • dynamic (wind) models (Höfner et al. 2003)
  • spectral synthesis calculations
  • abundance determination
  • investigation of atmospheric dynamics
  • intensity profiles
  • Rosseland mean opacities for
  • stellar evolution codes

5
Opacity calculations
  • Monochromatic opacities
  • Rosseland mean opacities

6
The new tables
  • Format of tables following Alexander Ferguson
    1994 to ease integrationwith existing codes
    (e.g. FRANEC)
  • X 0.5, 0.7, 0.8
  • Y 1 X Z
  • Initial Z - up to now only a few test cases
  • Z10-4
  • Z10-3 (3 x 10-3, 6 x 10-3)
  • Zsolar (Lodders 2003)
  • Enhanced 12C and 14N mass fractions by factors
    depending on initial Z,lowered 4He mass fraction
  • Results in 75 tables per metallicity

7
Showcases
  • X, Y, Z fixed at solar

8
(No Transcript)
9
Standard opacity
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Metallicity
14
(No Transcript)
15
(No Transcript)
16
Molecular species
  • C/O lt 1
  • (oxygen-rich case)

17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
H2O
TiO
VO
CO
CN
SiOOH
22
The transition
  • C/O variations

23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
Molecular species
  • C/O gt 1
  • (carbon-rich case)

27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
Tables in stellar evolution codes
  • Y rescaled instead of Z

34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
HCN
C2H2
cf. Cristallo et al. 2007
C3, C2, CN
H2O
CO
TiO
38
Approximation formulae
39
Approximation formulae
  • Marigo 2002, Keeley 1970 (Christy 1966)
  • Used by several authors
  • Marigo 2002
  • Lebzelter Wood 2007
  • Tscharnuter Gail 2007
  • (others plan/promise to use it)
  • What does RMO per molecule really mean?
  • How do you derive a formula for it?
  • How good does it work (for changing X, Y, Z,
    C/O)?

40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
Adding up opacity components
  • Advantages
  • fast (only needs chemistry calculations)
  • convenient
  • flexible
  • Disadvantages
  • correctness/accuracy (compared to tables)
  • valid for oxygen-rich and carbon-rich case?
  • cumbersome to find a formula!

45
Conclusion
  • C/O does matter for Rosseland mean opacity
  • log T lt 3.7 C/O ! solar
  • Need your feedback!

46
Encores
47
Open issues
  • Opacity sources (e.g. C2H)?
  • Chemistry
  • Interpolation/approximation formulae
  • Frequency-dependent radiative transfer in stellar
    evolution models?

48
Uncertainties
  • Things enter the calculation of the RMO that have
    nothing whatsoever to do with atomic/molecular
    data
  • Microturbulence
  • Spectral resolution, range
  • Interpolation (grid density)
  • (Abundances)

49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
COMA
  • Technical details

57
Some technical details
  • Input (main ingredients)
  • Pgas/T pairs (or r/T, Pel/T with iterative
    solution)
  • element abundances and isotopic ratios
  • atomic/molecular/dust data (line lists etc.)
  • constant parameters (mictroturbulence)
  • Operation
  • Chemical molecular equilibrium (equilibrium
    constants Tgt700K, 314 species, or GEM
    500-5000K, 892 species)
  • Ionization equilibrium for the species which are
    not in the chemical routines
  • Continuous, line, dust absorption
  • Output
  • Abundances of important molecular and atomic
    speciesEquation of state T ? p ? r (m)
  • opacity (cm2/g) for radiative transfer
    (components)

58
3D plots
59
(No Transcript)
60
(No Transcript)
61
(No Transcript)
62
Comparison
  • oxygen-rich vs. carbon-rich

63
H2O
HCN C2H2
C3, C2, CN
TiO
CO
64
(No Transcript)
65
(No Transcript)
66
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com