Blind Source Separation : from source separation to pixel classication - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Blind Source Separation : from source separation to pixel classication

Description:

1 Observatoire de la C te d'Azur (Nice) 2 Universit de Reims Champagne Ardenne. 3 Alcatel Space Cannes-la-Bocca. 28 November 2002 ... – PowerPoint PPT presentation

Number of Views:240
Avg rating:3.0/5.0
Slides: 19
Provided by: albertb2
Category:

less

Transcript and Presenter's Notes

Title: Blind Source Separation : from source separation to pixel classication


1
Blind Source Separation from source separation
to pixel classication
  • Albert Bijaoui1, Danielle Nuzillard2
  • Frédéric Falzon3
  • 1 Observatoire de la Côte d'Azur (Nice)
  • 2 Université de Reims Champagne Ardenne
  • 3 Alcatel Space Cannes-la-Bocca

2
Outlines
  • What is Blind Source Separation (BSS)?
  • Different BSS tools
  • Karhunen-Loève expansion (KL/PCA)
  • Independent Component Analysis (ICA)
  • Use of spatial correlations (SOBI, ..)
  • Experiment on HST/WFPC2 images
  • Source separation
  • Experiment on Multispectral Earth images
  • Pixel classification
  • Conclusion

3
The Cocktail Party Model
  • The mixing hypotheses
  • Linearity
  • Stationarity
  • Source independence
  • The equation
  • Xi images - Sj unknown sources - Ni noise
  • A aij mixing matrix

4
KL and PCA
  • Search of uncorrelated images
  • The Principal Component Analysis
  • Iterative extraction of the linear combinations
    having the greatest variance
  • PCA application to images ? KL
  • KL limitations
  • If Gaussian Probability Density Functions (PDF)
  • uncorrelated independent
  • If not
  • It may exist more independent sources than the
    ones resulting from the KL expansion

5
Mutual Information
  • Mutual Information between l variables
  • Case of Gaussian distributions
  • R is the matrix of correlation coefficients
  • In this case Uncorrelated Independent

6
Independent Component Analysis
  • Contrast Function
  • Mutual information of the sources
  • Contrast
  • Minimum Mutual information Maximum contrast
  • How to compute the source entropy ?

7
JADE
  • Comons approach
  • PDF Edgeworth Approximation
  • Cumulants use
  • JADE (Cardoso Souloumiac)
  • Based on order 4 cumulants
  • Rotation of KL separation matrix
  • Jacobi decomposition (2 à 2)
  • Joint Diagonalisation

8
Infomax (Bell Sejnowski)
  • ANN output
  • Minimisation rule of the output entropy
  • Choice of the activation function
  • Natural gradient (Amari)

9
FastICA
  • Helsinki Oja, Karhunen, Hyvärinen
  • Negentropy
  • Negentropy Entropy Gaussian rv Entropy rv
  • Negentropy approximation
  • Choice of the function G
  • Cumulant order 4, Sigmoid, Gaussian

10
BSS from spatial correlations
  • SOBI (Belouchrani et al.)
  • Cross-correlations between sources and shifted
    sources
  • Number p of cross correlation matrices
  • Jacobi / Givens decomposition
  • Joint diagonalization
  • F-SOBI (Nuzillard)
  • Cross-correlations are made in the Fourier space

11
The reduced HST images
12
KL Expansion of 3C120 images
13
Best visual Selection f-SOBI
14
CASIImages 9 filters394-907nmImages from
GSTB (Groupement Scientifique de Télédétection de
Bretagne) with the courtesy of the Pr. Kacem
Chehdi ENSSAT Lannion (France)
15
FastICAsources after denoising
16
Ground analysis
17
Classification
  • A source is not a pure element
  • Pixel classification is easily deduced by
    comparison to the ground analysis
  • BSS allows one to facilitate classification
  • New classes are probed by BSS analysis

18
Conclusion
  • Used BSS methods were based on the cocktail party
    model.
  • Typical tools for Data Mining
  • Adapted to multi-wavelengths observations or data
    from spectroimagers
  • Many applications source identification, pixel
    classification, denoising, compression, ..
Write a Comment
User Comments (0)
About PowerShow.com