WLS for Categorical Data - PowerPoint PPT Presentation

About This Presentation
Title:

WLS for Categorical Data

Description:

1 Less than 19. 2 19 21. 3 22 25. 4 26 30. 5 31 40. 6 ... How would the model change if we have less category in each covariates? Thank you ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 17
Provided by: helen138
Category:

less

Transcript and Presenter's Notes

Title: WLS for Categorical Data


1
WLS for Categorical Data
2
SAS CATMOD Procedure
  • To fit a model using PROC CATMOD
  • WEIGHT statement to specify the weight variable
  • Use WLS option at MODEL statement to obtain WLS
    estimates

3
Data - Response
  • Whether the investigation of the child also
    involves further investigation of the siblings
  • REVSIB 0 (No), 1 (Yes)

4
Data Covariates
  • q1a relationship to children
  • 1 Biological parent
  • 2 Common-law partner
  • 3 Foster parent
  • 4 Adoptive parent
  • 5 Step-parent
  • 6 Grandparent
  • 7 Other

5
Data - Covariates
  • q2a Gender of the Caregiver
  • 0 Female
  • 1 Male
  • 99 No response
  • q3a Age of the Caregiver
  • 1 Less than 19
  • 2 19 21
  • 3 22 25
  • 4 26 30
  • 5 31 40
  • 6 Over 40
  • 99 No Response

6
SAS Code
  • Saturated model
  • proc catmod
  • weight wtr
  • model revsibq1aq2aq3a_age / wls
  • run
  • quit

7
Output
  • The CATMOD Procedure
  • Data Summary
  • Response revsib Response Levels
    2
  • Weight Variable wtr Populations
    28
  • Data Set T2 Total Frequency
    6821.55
  • Frequency Missing 59.54 Observations
    1574

8
Analysis of Variance
  • Source DF Chi-Square Pr gt ChiSq
  • -------------------------------------------------
  • Intercept 1 3.70 0.0544
  • q1a 5 12.89 0.0244
  • q2a 1 0.18 0.6753
  • q1aq2a 4 18.74 0.0009
  • q3a_age 5 12.35 0.0303
  • q1aq3a_age 7 28.19 0.0002
  • q2aq3a_age 3 5.17 0.1598
  • q1aq2aq3a_age 2 13.34 0.0013
  • Residual 0 . .
  • NOTE Effects marked with '' contain one or more
  • redundant or restricted parameters.

9
Maximum Likelihood Analysis of Variance
  • Maximum Likelihood Analysis of Variance
  • Source DF Chi-Square Pr gt
    ChiSq
  • --------------------------------------------------
    -
  • Intercept 1 1727.82
    lt.0001
  • q1a 0 . .
  • q2a 0 . .
  • q1aq2a 0 . .
  • q3a_age 1 . .
  • q1aq3a_age 7 . .
  • q2aq3a_age 1 . .
  • q1aq2aq3a_age 6 . .
  • Likelihood Ratio 12 0.00
    1.0000
  • NOTE Effects marked with '' contain one or more
  • redundant or restricted parameters.

10
Analysis of Maximum Likelihood Estimates
  • Standard
    Chi-
  • Parameter Estimate Error
    Square Pr gt ChiSq
  • --------------------------------------------------
    -----------------------------
  • Intercept -6.8146 0.1639
    1727.82 lt.0001
  • q1a 1 3.3370 .
    . .
  • 3 19.7614 .
    . .
  • 4 -29.8195 .
    . .
  • 5 2.8181 .
    . .
  • 6 -5.2236 .
    . .
  • q2a 0 -4.8953 .
    . .
  • q1aq2a 1 0 5.2304 .
    . .
  • 3 0 -19.0829 .
    . .
  • 4 0 12.8882 .
    . .
  • 5 0 -3.3065 .
    . .
  • 6 0 5.6687 .
    . .
  • q3a_age 1 12.6303 .
    . .
  • 2 -0.0398 500.1
    0.00 0.9999
  • 3 -3.9163 .
    . .

11
Reduced Model
  • Analysis of Variance
  • Source DF Chi-Square Pr gt ChiSq
  • ---------------------------------------------
  • Intercept 1 6.51 0.0107
  • q1a 5 15.88 0.0072
  • q3a_age 5 155.85 lt.0001
  • q1aq3a_age 7 13.06 0.0707
  • Residual 0 . .

12
Main Effect
  • Analysis of Variance
  • Source DF Chi-Square Pr gt ChiSq
  • ---------------------------------------------
  • Intercept 1 15.76 lt.0001
  • q1a 5 52.18 lt.0001
  • q3a_age 5 366.53 lt.0001
  • Residual 7 13.06 0.0707

13
  • Analysis of Weighted Least Squares Estimates
  • Standard Chi-
  • Parameter Estimate Error Square
    Pr gt ChiSq
  • --------------------------------------------------
    ----------
  • Intercept -1.6354 0.4119 15.76
    lt.0001
  • q1a 1 -0.1394 0.3190 0.19
    0.6622
  • 3 -0.3338 0.8170 0.17
    0.6828
  • 4 3.8902 1.2238 10.11
    0.0015
  • 5 -2.8567 0.6279 20.70
    lt.0001
  • 6 -1.3913 0.3849 13.07
    0.0003
  • q3a_age 1 0.1185 1.2875 0.01
    0.9267
  • 2 -1.5960 0.3706 18.55
    lt.0001
  • 3 1.5098 0.2785 29.40
    lt.0001
  • 4 -0.8969 0.2780 10.41
    0.0013
  • 5 0.0673 0.2673 0.06
    0.8013

14
Conclusion
  • For cases where the Caregiver is Adoptive
    parent, it is highly likely that the siblings
    will also be investigated
  • For Caregiver between age 22-25, those cases will
    also likely to have the siblings investigated
  • Intercept ? when not much information is observed
    regarding the caregiver, chances are the siblings
    will not be reviewed in the case.

15
Questions
  • WLS is more efficient than ML?
  • Should the records with no response be deleted?
  • Is 99 the best code to indicate no response?
  • How would the model change if we have less
    category in each covariates?

16
Thank you ?
Write a Comment
User Comments (0)
About PowerShow.com