Relational Sequence classification - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Relational Sequence classification

Description:

Underlying motivation: sequence-dedicated variant of ILP classifier useful in e. ... data(359,[talk(inder), last(blob), f(blob), f(inder), mail],sci) ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 21
Provided by: nicoj
Category:

less

Transcript and Presenter's Notes

Title: Relational Sequence classification


1
Relational Sequence classification
  • Part IIIin the Flf sequence trilogyby Nico
    Jacobs

2
Basic Idea
  • Given a set of labeled relational strings
  • Produce a readable classifier
  • Underlying motivation sequence-dedicated variant
    of ILP classifier useful in e.g. user modeling
    tasks

3
The input
  • List of ground atoms separated by explicit
    distance

4
The output sequences
5
When does the output cover the input?
6
Upgrade CN2
  • CN2
  • covering approach
  • greedy beam search
  • produces decision list or set of rules

7
Separate-and-conquer
8
Beam search
9
Quality criteria
10
Refinement operator
11
Unix shell data set
data(359,talk(inder), last(blob), f(blob),
f(inder), mail,sci). data(360,c, fg, fg,
man(mail), mail(camille), fg, p('kratz/proj/lates
t'), mail(kratz), f(kratz), p('kratz/proj/latest'
), head('/mbox'), head(mbox), mail, e, ls,
cd('text/651'), mail,sci). data(361,fg,talk(inde
r), f(inder), rlogin('sun-fsa'),
mail,sci). data(362,fg, mail,
rlogin('sun-fsa'), hello, ls, tidy, ll(temp), ls,
man(quota), man('8', quot), man(quot), man(du),
rm('..BAK', '..CKP'), ll, ll(temp), kill('1'),
kill('51'), ll(temp), ll(temp),ll(temp), yes(gt,
temp, ), yes, ls('.del'), quota,sci).
12
Output
  • 400 sequences
  • 11455 actions
  • 4 groups
  • majority class 25

13
Producing unordered list
14
  • More rules
  • More maximal distance constraints

15
Beam Size
16
Quality criteria
  • No big difference between criteria
  • m-estimate (with low m) best
  • for unordered as well as ordered sets

17
Language
  • Optimal refinement operator performs comparable
    to non-optimal operator
  • add clause at front as well
  • increase / decrease gaps in any order/size
  • instantiate/bind vars in any order
  • Should be tested on other tasks/ data sets

18
Extension Background knowledge
19
Extension Context learning
20
questions lt comments lt valuable insights
Write a Comment
User Comments (0)
About PowerShow.com