Byzantine Fault Tolerance - PowerPoint PPT Presentation

1 / 83
About This Presentation
Title:

Byzantine Fault Tolerance

Description:

Since less than half of the military attacked, the military attack failed... 12 ... Each site now sends the attack plan they've received to the other sites... 19 ... – PowerPoint PPT presentation

Number of Views:747
Avg rating:3.0/5.0
Slides: 84
Provided by: wad86
Category:

less

Transcript and Presenter's Notes

Title: Byzantine Fault Tolerance


1
Byzantine Fault Tolerance
  • Presented By Paper Wade Fagen 1 Lucas
    Cook 2, 3

2
The Papers
  • 1 The Byzantine Generals Problem, Lamport et
    al.
  • 2 Practical Byzantine Fault Tolerance, Castro
    et al.
  • 3 Preserving Peer Replicas By Rate-Limited
    Sampled Voting, Maniatis et al.

3
The Byzantine Generals
  • Let us assume we have five generals

4
The Byzantine Generals
  • Let us assume one is malicious

5
The Byzantine Generals
  • Each local general decides on an attack

6
The Byzantine Generals
  • and accurately relays their plan

7
The Byzantine Generals
  • except the random malicious node

8
The Byzantine Generals
  • Each general collects his or her votes

9
The Byzantine Generals
  • Assume each general takes the majority vote

10
The Byzantine Generals
  • The generals now move based upon their agreed
    orders

11
The Byzantine Generals
  • Since less than half of the military attacked,
    the military attack failed

12
The Byzantine Generals
  • Whats interesting the remaining loyal nodes
    dont know which node(s) among them are disloyal.

13
The Byzantine Generals
  • Let us replan the attack

14
The Byzantine General Problem
  • Let the generals decide for one to be the leader
    and others to simply be lieutenants.

Ill be the general!
15
The Byzantine General Problem
  • Now the general plans the attack

16
The Byzantine General Problem
  • The general sends out his or her order to all
    lieutenants

17
The Byzantine General Problem
  • Each site records the message they received

18
The Byzantine General Problem
  • Each site now sends the attack plan theyve
    received to the other sites

19
The Byzantine General Problem
  • Again, each site records all messages received

20
The Byzantine General Problem
  • This process may continue for any number of
    rounds, but well stop here for now

21
The Byzantine General Problem
  • Each site finds the majority value of its final
    round

22
The Byzantine General Problem
  • Result All loyal nodes agree on the same result!

23
The Byzantine General Problem
  • What assumptions were made?
  • A1 Every message sent was delivered correctly.

as we didnt see
24
The Byzantine General Problem
  • What assumptions were made?
  • A1 Every message sent was delivered correctly.
  • A2 The receiver of the message knows who sent it.

as we didnt see
25
The Byzantine General Problem
  • What assumptions were made?
  • A1 Every message sent was delivered correctly.
  • A2 The receiver of the message knows who sent
    it.
  • A3 All sites sent a message.

???
as we didnt see
26
The Byzantine General Problem
  • What assumptions were made?
  • A1 Every message sent was delivered correctly.
  • A2 The receiver of the message knows who sent
    it.
  • A3 The absence of a message can be detected.

No message for me (
so we might see
a pre-defined default value may be used
27
The Byzantine General Problem
  • How many disloyal troops can we have and still
    reach consensus?

28
The Byzantine General Problem
  • Pre-determined general creates an attack plan

29
The Byzantine General Problem
  • Round 1Send out messages Record

30
The Byzantine General Problem
  • Round 2Send out messages Record

31
The Byzantine General Problem
  • Round 3Send out messages Record

32
The Byzantine General Problem
  • Seems like 1 disloyal troop with 2 loyal troops
    works

33
The Byzantine General Problem
  • but does it?

34
The Byzantine General Problem
  • Round 1Send out messages Record

35
The Byzantine General Problem
  • Round 2Send out messages Record

36
The Byzantine General Problem
  • Round 3Send out messages Record

37
The Byzantine General Problem
  • Round 4Send out messages Record

38
The Byzantine General Problem
  • Round 5Send out messages Record

39
The Byzantine General Problem
  • Round 6Send out messages Record

40
The Byzantine General Problem
  • Lamport shows (by proof)
  • For a system of n1 nodes, there cannot exist
    more than n/3 faulty nodes.
  • Alternatively
  • There must be more than 3m troops in any army
    with up to m traitors.

41
The Byzantine General Problem
  • General Proof Outline
  • Pair two loyal troops with each disloyal troop

42
The Byzantine General Problem
  • General Proof Outline
  • There must exist one more loyal troop to sway the
    balance of the majority

43
The Byzantine General Problem
  • General Proof Outline
  • But the proof only holds if the algorithm runs
    for m (or more) total rounds!

1
4
2
5
3
6
44
The Byzantine General Problem
  • Up until now, the node has been malicious. But
    is that all?
  • A Byzantine failure is
  • An arbitrary failure of the node.
  • Adversarial assumption (worst-case)
  • The adversary is as smart as the system.
  • Thus, a system prone to Byzantine failures may
    not always suffer a Byzantine failure
    fail-stop failures may also exist.

45
The Byzantine General Problem
  • Tough stuff. But if we add one more assumption,
    we can make the problem a lot easier
  • A4 Messages are signed.
  • a) A loyal general has a signature that cannot be
    forged
  • b) A signed message cannot be altered without
    detection
  • c) Anyone can verify the signature

46
The Byzantine General Problem
  • Returning to the problem that didnt work with
    unsigned messages

47
The Byzantine General Problem
  • Previously, our general sent two order out

48
The Byzantine General Problem
  • But when the algorithm runs for a second round

Conflicting Orders!
49
The Byzantine General Problem
  • The authors find that, by using signed messages
  • Any number of disloyal generals may exist in a
    system.
  • Problem is trivial if n lt m2.
  • All loyal generals will agree on a common result
    after m rounds.

50
The Two Generals Problem
  • Reviewing our assumptions
  • A1 Every message sent was delivered correctly.
  • The Two Generals Problem showed that two
    generals cannot ever reach consensus with the
    possibility of lost messages.
  • Developed by Akkoyunlu et al. in 1975.

51
The Byzantine General Problem
  • The core Byzantine problem is well studied and
    understood
  • Works for systems where not all nodes can
    communicate with one another.
  • 1 presents the case of 3-regular graphs
  • Clock synchronization problems have be solved in
    Byzantine-prone systems
  • Interactive Consistency Algorithms (Lamport,
    1986)

52
Useful?
  • In a system with a bound on adversarial nodes,
    you must perform at least m rounds to reach
    consensus.
  • Unsigned Messages m (n-1)/3
  • Signed Messages m n
  • Requires PKI or some similar system.

53
Useful?
  • Could you develop a practical replica server
    based upon
  • Message loss, reordering, duplication
  • Independent node failures
  • PKI and collision-resistant hashing
  • Strong adversary
  • Replicated service based on state machine
  • As we examine 2, we will find out

54
Consensus Protocol Goals
  • Liveness
  • Clients receive replies to requests
  • Safety
  • Replicated service is linearizable
  • i.e. it appears centralized w/ atomic ops
  • We need n gt 3f nodes!
  • 2f1 to act with confidence, f may never respond

55
Consensus Protocol Views
  • Leader p v mod n
  • Advance leader with failure v1
  • View change needs to be coordinated
  • New leader sends request
  • Get replies, sends those out as proof
  • Coordinates checkpoints (shown later)

56
Consensus Protocol Consensus
  • Client receives replies from replicas
  • Needs f1 identical results
  • Ensure total ordering across views

57
Consensus Protocol Consensus
  • Pre-prepare from node i
  • Contains view , sequence , hash of request,
    request
  • Prepare from node j
  • Contains view , seq , hash, ID for j
  • Commit from node j
  • Contains view , seq , hash, ID for j

58
Consensus Protocol Checkpoints
  • Checkpoint to catch all nodes up to current state
  • Messages used as proof (signed)
  • Advance seq. space with each checkpoint
  • During view change, new leader finds consistent
    checkpoint to distribute.

59
Optimizations and Implementation
  • Messaging delays
  • Tentative execution of requests
  • Messaging overhead
  • Only one replica actually replies with full
    answer others with hash
  • Implement BFS
  • Byzantine-fault-tolerant file system

60
Practical?
  • 133 MHz Alpha 21064
  • 128 MB mem
  • DEC RZ26 disks at each replica
  • Tests done without view change / adversarial
    elements

61
Practical?
62
But what about scale?
  • So far
  • Absolute security/safety guarantees
  • Strict upper bound on faulty processes
  • Byzantine in P2P?
  • Limited view of entire system
  • Exactly how many users can you trust?
  • Issues with consensus (e.g. broadcast)

63
LOCKSS 3 The Problem
  • Persistent Distributed Storage
  • Low cost nodes
  • Cheap storage
  • No long term secrets
  • Long term guarantees
  • Powerful and long term adversary
  • e.g. Library journal storage
  • Built as a P2P system

64
LOCKSS The Solution
  • Lots Of Copies Keep Stuff Safe
  • Use inertia
  • No need for speed
  • Force proofs of computation
  • Sybil attack
  • Lengthen the adversarial commitment
  • Voting among peers

65
LOCKSS Lists
  • Four lists of neighbors in LOCKSS
  • Reference List
  • Maintained
  • Inner Circle
  • From reference list, per poll
  • Outer Circle
  • Nominated by inner circle, per poll
  • Friends List
  • From outside the system

66
LOCKSS Polling
67
LOCKSS Neighbors
  • Discovery process Outer Circle
  • Use their votes to prove that they have that
    content
  • Remove disagreeing inner circle and some agreeing
    inner circle
  • Churn with friends list

68
LOCKSS Benefits
  • Benefits of the voting process
  • Rate limited by loyal peers
  • Encourages clusters of similar data
  • Prevents freeriding and theft
  • Byzantine tolerance without f!
  • Probabilistic guarantee

69
LOCKSS Simulation
  • Up to 30 years
  • 1000 peers
  • 2 mins to hash an AU (archival unit)
  • With 20 invitees it would take 6 hours
  • Stealth Modification Adversary
  • Controls some of peers at start
  • Lurk phase Bias lists, gain foothold
  • Attack phase try to corrupt data

70
LOCKSS Results for lurking
71
LOCKSS Results for lurking
72
LOCKSS Results for damage
73
LOCKSS Results for Churn
74
Discussion LOCKSS
  • In the presentation of LOCKSS
  • ExpectedArchivalUnitHashTime 120s
  • What would happen if?
  • A malicious collective had significantly more
    processing power than the average of the system.
  • ExpAUHashTime 5s?

75
Discussion LOCKSS
  • In the presentation of LOCKSS
  • ExpectedArchivalUnitHashTime 120s
  • What would happen if?
  • A malicious collective had (or pretended to have)
    significantly less than processing power than the
    average of the system?
  • ExpAUHashTime timeout 1ms?

76
Discussion LOCKSS
  • In the presentation of LOCKSS
  • ExpectedArchivalUnitHashTime 120s
  • What would happen if?
  • LOCKSS was deployed as-is 10 years after its
    release?
  • ExpAUHashTime 120s / 2( years)
  • Assumes a doubling of computing power/yr
  • ExpAUHashTime 0.1171875s 117ms

77
Discussion The Byzantine Generals
  • In the beginning of this presentation, we began
    with a problem of every general giving an initial
    value and no coordinated leader.

78
Discussion The Byzantine Generals
  • How do we reach the end such that all loyal
    generals agree on the same outcome?

79
Discussion The Byzantine Generals
  • Trivial Solution (Lamport et al., 1982)
  • Run Byzantine Generals a total of n times, where
    the chosen general is a different site each of
    the n times.
  • Take the majority vote of the total of n rounds.
  • Is there a more optimal solution?

80
Discussion The Byzantine Generals
  • The Byzantine generals problem is presented in
    1 in terms of only two options attack or
    retreat. What if we needed an agreed upon int?

81
Discussion The Byzantine Generals
  • The Byzantine Generals problem requires m rounds
    to protect against m disloyal troops.
  • We could reduce the number of rounds if we could
    somehow determine how much disloyalty exists in
    the system.
  • Could we?

82
Discussion The Byzantine Generals
  • With a PKI (signed messages)
  • Allows m n therefore, n rounds must be made
    AND requires the overhead of a PKI.
  • Without a PKI (unsigned messages)
  • Forces m lt n/3 therefore, only n/3 rounds and no
    PKI.
  • Therefore, are there a significant number of
    systems where a PKI-free system would be
    desirable?

83
Thanks!
Write a Comment
User Comments (0)
About PowerShow.com