Type inference - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Type inference

Description:

Andrew Myers. Cornell University. Lecture 27. Type inference. 2 Nov 05. Cornell University CS 611 Fall'04 -- Andrew Myers. 2. Type inference (reconstruction) ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 16
Provided by: andrew433
Category:
Tags: andrew | inference | type

less

Transcript and Presenter's Notes

Title: Type inference


1
  • Lecture 27
  • Type inference
  • 2 Nov 05

2
Type inference (reconstruction)
  • Simple typed language
  • e x b lxt . e e1 e2 e1 e2
  • if e0 then e1 else e2 let xe1 in e2 rec
    yt1t2.(lx.e)
  • unit bool int t1t2
  • Question Do we really need to write type
    declarations?
  • e lx.e rec y.(lx.e)

3
Typing rules
  • e x b lx.e e1 e2 e1 ? e2 if e0
    then e1 else e2 let xe1 in e2 rec y.lx.e

Problem how does type checker construct
proof? Guess t, t? ?
4
Example
  • let square lz.zz in(lf.lx.ly. if (f x
    y) then (f (square x) y) else (f x (f x y)))
  • What is the type of this program?

5
Manual type inference
  • let square lz.zz in(lf.lx.ly. if (f x
    y) then (f (square x) y) else (f x (f x y)))
  • z int
  • s, square intint
  • f txtybool
  • y ty bool
  • x tx int

Answer (intboolbool)intboolbool
6
Type inference
  • Goal reconstruct types even after erasure
  • Idea run ordinary type-checking algorithm,
    generate type equations on type variables

fT2, xT5 ? f int T6 fT2, xT5 ? 1
int fT2, xT5 ? f 1 T6 fT2 ? lx. f 1 T1
(T5T6) yT3 ? y T4 ?lf. lx. f 1
T2T1 ?(ly.y) T2 (T2T3T4) ?(lf.lx. (f 1))
(ly.y) T1
(T3T4)
T2 T3T4, T3 T4, T1 T5T6, T2 intT6
7
Typing rules
Only type metavariableson RHS of premises
8
Unification
  • How to solve equations?
  • Idea given equation t1 t2, unify type
    expressions to solve for variables in both
  • Example T1int (boolT2)T3
  • Result substitution T1 ? boolT2, T3?int

9
Robinsons algorithm (1965)
  • Unification produces weakest substitution that
    equates two trees
  • T1int (boolT2)T3 equated by anyT1?boolT2,
    T3?int, T2?t
  • Defn. S1 is weaker than S2 if S2 S3?S1 for S3
    a non-trivial substitution
  • Unify(E) where E is set of equations gives
    weakest equating substitution define recursively
  • Unify(T t, E) Unify(Et/T)?T?t
  • (if T?FTV(t))

10
Rest of algorithm
  • Unify(T t, E) Unify(Et/T)?T?t
  • (if T?FTV?t?)
  • Unify(?) ?
  • Unify(B B, E) Unify(E)
  • Unify(B1 B2, E) ?
  • Unify(T T, E) Unify(E)
  • Unify(t1?t2t3?t4, E)
  • Unify(t1t3, t2t4, E)
  • Well-founded? Degree (vars, size(eqns))

11
Type inference algorithm
  • R(e, G, S) ?t, S?? meansReconstructing the
    type of e in typing context G with respect to
    substitution S yields type t, identical or
    stronger substitution S? or
  • S? is weakest substitution no weaker than than S
    such that S?(G) ? e S?(t)
  • Define Unify(E, S) Unify(SE)?S
  • solve substituted equations E and fold in new
    substitutions

12
Inductive defn of inference
  • R(e, G, S) ?t, S?? ? S? is weakest
    substitution stronger than (or same as) S such
    that S?(G) ? e S?(t)
  • Unify(E, S) Unify(SE)?S
  • R(n, G, S) ?int, S? R(true, G, S) ?bool,
    S?
  • R(x, G, S) ?G(x), S?
  • R(e1 e2, G, S) let ?T1, S1? R(e1, G, S) in
  • let ?T2, S2? R(e2, G, S1) in
  • ?Tf, Unify(T1T2?Tf, S2)?
  • R(lx.e, G, S) let ?T1, S1? R(e, Gx?Tf, S) in
  • ?Tf ?T1, S1?
  • where Tf is fresh (not mentioned anywhere in e,
    G, S)

13
Example
  • R((lx.x) 1, ?, ?)
  • let ?T1, S1? R(lx.x, ?, ?) in
  • let ?T2, S2? R(1, ?, S1) in
  • ?T3, Unify(T1?T3 T2, S2)?
  • R(lx.x, ?, ?) let ?T1, S1? R(x, Gx?T4, ?)
    in
  • ?T4?T1, S1?
  • ?T4?T4, ??
  • let ?T2, S2? R(1, ?, ?) in ?T3, Unify(T2?T3
    T4?T4, ?)?
  • ?T3, Unify(int?T3 T4?T4, ?)?
  • ?T3, Unify(intT4, T3 T4, ?)?
  • ?T3, Unify(T3 int, T4?int)?
  • ?T3, T3 ? int, T4?int)?

14
Implementation
  • Can implement with imperative update
  • datatype type Int Bool Arrow of type
    type TypeVar of type option ref
  • fun freshTypeVar()
  • TypeVar(ref NONE)
  • fun resolve(t type) case t of
  • TypeVar(ref (SOME t)) gt t _ gt t
  • fun unify(t1 type, t2 type) unit case
    (resolve t1, resolve t2) of (TypeVar(r as ref
    NONE), t2) gt r t2 (t1, TypeVar(r as ref
    NONE)) gt r t1 (Arrow(t1,t2), Arrow(t3,t4))
    gt unify(t1,t3) unify(t2,t4) (Int, Int) gt ()
    (Bool,Bool) gt () _ gt raise Fail Cant
    unify types

15
Polymorphism
  • R(lx.x, ?, ?) let ?T1, S1? R(x, Gx?T4, ?) in
  • ?T4?T1, S1?
  • ?T4?T4, ??
  • Reconstruction algorithm doesnt solve type
    fully opportunity!
  • lx.x can have type T4?T4 for any T4
  • polymorphic ( many shape) term
  • Could reuse same expression multiple places in
    program, with different types
  • let id (lx.x) in (f id) (g x id) id
Write a Comment
User Comments (0)
About PowerShow.com