"INTELLIGENT" OPTIMAL DESIGN OF COMPOSITES - PowerPoint PPT Presentation

1 / 55
About This Presentation
Title:

"INTELLIGENT" OPTIMAL DESIGN OF COMPOSITES

Description:

input descriptors (numbers, alphanumeric, boolean, files... iii) Alphanumeric. iv) Name of files. data base access. curve, signal. pictures... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 56
Provided by: jza2
Category:

less

Transcript and Presenter's Notes

Title: "INTELLIGENT" OPTIMAL DESIGN OF COMPOSITES


1
  • "INTELLIGENT" OPTIMAL DESIGN OF COMPOSITES
  • Joseph ZARKA

2
1. INTRODUCTION
  • Serious Difficulties
  • constitutive modeling ?
  • random or unknown loading ?
  • Initial state ?
  • Experimental tests ?
  • Numerical simulations ?

3
2. LEARNING EXPERT SYSTEMS
  • Unknown full solution
  • One raw examples base built by EXPERTS
    experimentally or numerically or ..
  • with
  • input descriptors (numbers, alphanumeric,
    boolean, files...)
  • output descriptors or conclusions classes or
    real numbers

4
2. LEARNING EXPERT SYSTEMS
  • Generally
  • non statistically representative
  • with few, fuzzy, missing information !!
  • Any tool that can be applicable
  • Learning neural network, computational
    learning, linear regression, fuzzy logic,
    symbolic learning

5
2. LEARNING EXPERT SYSTEMS
  • Optimization
  • classical convexity of the cost function and the
    functions constraints
  • all functions analytical and differentiable
  • Real problems
  • non-convexity of functions and only known by
    values !!
  • Optimization genetic algorithm, annealing...

6
2. LEARNING EXPERT SYSTEMS
  • Prepare User format gt L.E.S format Split
    database into learning and test sets
  • Learn Draw rules from learning set
  • Inclear shows active descriptors and rules
  • Test Evaluates rules with test set
  • Conclude Rulesgt Conclusion Apply rules to
    solve new problems
  • Optimize Deliver the best result under some
    constraints

7
LES by LMS of Ecole Polytechnique
8
LES by LMS of Ecole Polytechnique
9
NEUROSHELL by Wards System
10
NEUROSHELL by Wards System
11
3. GENERAL METHODOLOGY
  • 3.1. BUILDING THE DATA BASE
  • EXPERTS gtall variables or descriptors which may
    take a part
  • i) PRIMITIVE descriptors x (limited
    number)
  • ii) INTELLIGENT descriptors XX (large
    number)
  • with the actual whole knowledge
  • simplified analytical models
  • simplified analysis
  • complex (but insufficient) beautiful theories !!

12
3. GENERAL METHODOLOGY
  • Experimental results or field observations
  • Numerical analysis results
  • General tools to describe
  • geometry
  • material properties
  • loading
  • signals, curves, images.

13
3. GENERAL METHODOLOGY
  • INPUT DESCRIPTORS
  • i) Number
  • ii) Boolean
  • iii) Alphanumeric
  • iv) Name of files
  • data base access
  • curve, signal
  • pictures....

14
3. GENERAL METHODOLOGY
  • OUTPUT DESCRIPTORS or CONCLUSIONS
  • i) classes (good, not good, leak, break...)
  • ii) numbers (cost, weight,...)
  • 50 examples in the data base
  • 10 to 1000 descriptors
  • 1 to 20 conclusionsMOST IMPORTANT (DIFFICULT)
    TASK

15
3. GENERAL METHODOLOGY
  • 3.2. GENERATING THE RULES with any Machine
    Learning tool
  • i) Intelligent descriptors help the algorithms
  • ii) Each conclusion explained as function or
    rules of some intelligent descriptors
  • iii) with known Reliability
  • if too low gt
  • not enough data
  • bad or missing intelligent descriptors

16
3. GENERAL METHODOLOGY
  • 3.3. OPTIMIZATION at two levels (Inverse Problem)
  • i) independent intelligent descriptors
  • may be impossible OPTIMAL SOLUTION
  • but DISCOVERY OF NEW MECHANISMS
  • ii) intelligent descriptors linked to primitive
    descriptors
  • OPTIMAL SOLUTION
  • technological possible !

17
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
PRIMITIVE DESCRIPTORS OF THE AGGREGATE
  • MATERIALS matrix and inclusions
  • GEOMETRY
  • concentration, shape, number,
  • random distribution of inclusions
  • nb_inc Shaper C_x C_y dis1 dis2 dmin
    dmax

18
(No Transcript)
19
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
PRIMITIVE DESCRIPTORS OF THE AGGREGATE
  • OUTPUT DESCRIPTORSor CONCLUSIONS
  • Measured effective global coefficients
  • here numerically computed coefficients

20
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
  • Simple approximates values and
  • Many papers were published
  • Extremal Bounds were produced

21
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
  • Voigt and Reuss Averages
  • Self-consistent Model
  • Hashin-Strickman bounds
  • E. Kroner, S. Nemat-Nasser
  • John. Willis, P. Ponte Castaneda, P. Suquet
    ...with also non linearity

22
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
PRIMITIVE DESCRIPTORS OF THE AGGREGATE
23
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
PRIMITIVE DESCRIPTORS OF THE AGGREGATE
24
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
PRIMITIVE DESCRIPTORS OF THE AGGREGATE
25
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
  • GEOMETRY

26
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
27
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
28
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
  • fichr volfrac L11P L21P L32P L66P nb_inc
    Shaper C_x C_y dis1 dis2 dmin dmax L11
    L22 L12 L31 L32 L66
  • 66 0.052 13649 5108.6 4617.4
    4306.1 7 0.3 .0857 0.1257 0.0965
    0.1321 0.172 0.9209 14544 13452 4631.9
    4768.1 4585.3 4418.6
  • 68 0.056 17185 7136.5 6392.7
    4996.8 7 0.3 0.0171 0.1114 0.0687 0.1157 0
    .2088 0.6812 18087 16907
    6473.5 6507.3 6368.4 5221.4
  • 60 0.0624 18820 7565.3 6583.7
    5595 1 0.3 0.44 0.12 0 0 0 0 19634 18516 6667.5
    6654.1 6564.3 5930.3
  • 62 0.0624 16114 7407.4
    6698.2 4383.5 1 0.3 0.3 0.18 0 0 0 0 17369 15864 6
    733.9 6895.9 6660.6 4576.5
  • 59 0.0624 16913 7447.2
    6664.4 4766.4 20 0.7 0.002 0.029 0.1985 0.3578 0.1
    077 0.8938 17344 16747 6748.5 6735.1 665
    0.3 5000.2

29
Without Berhens
34 34 189 4 fichr 6 Yinc 6 Pinc 6 Ymat 6 Pmat 6
volfrac 4 Linc 4 Minc 4 Kinc 4 Lmat 4 Mat 4
Kmat 4 L11P 4 L22P 4 L21P 4 L12P 4 L31P 4 L32P 4
L66P 6 nb_inc 6 Shaper 6 C_x 6 C_y 6 dis1 6
dis2 6 dmin 6 dmax 4 L11 4 L22 4 L21 4 L12 4
L31 4 L32 6 L66
30
With Berhens
34 34 189 4 fichr 6 Yinc 6 Pinc 6 Ymat 6 Pmat 6
volfrac 4 Linc 4 Minc 4 Kinc 4 Lmat 4 Mat 4
Kmat 6 L11P 4 L22P 6 L21P 4 L12P 6 L31P 4 L32P 6
L66P 6 nb_inc 6 Shaper 6 C_x 6 C_y 6 dis1 6
dis2 6 dmin 6 dmax 4 L11 4 L22 4 L21 4 L12 4
L31 4 L32 6 L66
31
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
  • L11P 6.065885e04 Min 1.364900e04 Max
    1.076687e05
  • L21P 2.399668e04 Min 5.108586e03 Max
    4.288477e04
  • L32P 1.533811e04 Min 4.617410e03 Max
    2.605881e04
  • L66P 2.408491e04 Min 3.997819e03 Max
    4.417200e04
  • Shaper 6.500000e-01 Min 3.000000e-01 Max
    1.000000e00
  • C_y 4.300005e-01 Min 0.000000e00 Max
    8.600010e-01
  • dis1 1.517385e-01 Min 0.000000e00 Max
    3.034770e-01
  • dmin 3.573515e-01 Min 0.000000e00 Max
    7.147030e-01
  • dmax 5.720150e-01 Min 0.000000e00 Max
    1.144030e00

32
4. EFFECTIVE PROPERTIES OF AN ELASTIC AGGREGATE
INTELLIGENT DESCRIPTORS OF THE AGGREGATE
  • 4.886128371032892e-01B27.199760148713786e-01B
    15.745424421382571e-01B4-2.969919726949107e-01
    B3L11 SUM(A13A15)
  • -4.347019108012945e025.316839278263813e02B6
    7.897379163532516e02B54.208787571884625e-01B
    26.818804488243249e-01B16.548424547358641e-01B
    4-1.587820070111455e-01B3L22 SUM(A19A21)
  • 1.990435738582639e03B71.887591260190284e02B
    5-5.069423034625935e02B92.392386469571942e02
    B81.436020191892966e-01B23.344745151494068e-01
    B13.457936746809989e-01B4-5.089260475848305e-
    01B3L66 SUM(A40A42)

33
4. EFFECTIVE PROPERTIES OF AN ELASTIC
AGGREGATEERROR OF THE MESO-MODELING
34
4. EFFECTIVE PROPERTIES OF AN ELASTIC
AGGREGATEOPTIMIZATION
35
5. OPTIMAL DESIGN OF WOVEN COMPOSITE MATERIALS
  • Used in radomes
  • Mechanical and electromagnetical properties !
  • rather stiff structure but in the same time
    transparency to the waves !!

36
5. OPTIMAL DESIGN OF WOVEN COMPOSITE MATERIALS
  • Classical layer composite materials
  • Woven composite materials
  • elastic properties
  • ultimate properties in tension, compression,
    flexion ...
  • electromagnetic properties

37
5. OPTIMAL DESIGN OF WOVEN COMPOSITE MATERIALS
  • Woven composite materials
  • hybrid composites several fibers but only one
    resine (RP13)
  • only 16 specimens (AIA de Cuers-Pierrefeu)

38
5. OPTIMAL DESIGN OF WOVEN COMPOSITE MATERIALS
  • Specimen for mechanical tests
  • Only 16 tests were performed for randomly
    designed woven composite materials

39
5. OPTIMAL DESIGN OF WOVEN COMPOSITE MATERIALS
  • Definition of the global mechanical data

40
Data base on fibers
41
(No Transcript)
42
Mechanical and electromagnetical results
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
PROBLEM Optimal Design
  • i) a few tests are available (no DOE!!),
  • ii) simulated predictions are not very reliable
  • iii) necessary to adjust its mechanical
    elastic/inelastic properties and its
    electromagnetic properties
  • iv) and to take care of its weight and its price
    !
  • gt NEW APPROACH

47
First Fusion
48
(No Transcript)
49
PARTICULAR PROCEDURE
  • eps_th permittivity of the material

50
PARTICULAR PROCEDURE
  • Several quasi-analytical models for mechanical
    properties for
  • one dimensionnal bundle,
  • classical layered composites with straight
    bundles,
  • waves on bundles
  • or complex numerical simulations

51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
6. CONCLUSIONS
  • ACTUAL APPROACH gt DESIGN OF THE FUTURE !!!
  • ABSOLUTE NECESSITY also inControl of
    ProcessesSurvey of Structures...
  • Linking automatic learning and optimization
    techniques with mechanical expertise
Write a Comment
User Comments (0)
About PowerShow.com