Title: Improving Hybrid MDS Application to Antarctic Data
1Improving Hybrid MDS Application to Antarctic
Data
- Matthew Chalmers, Alistair Morrison, Greg Ross
- University of Glasgow
2Introduction
- Visualising multidimensional (gt3D) data
- Standard MDS fast, but just a linear combination
of input dimensions - Non-linear MDS more detail/structure, but simple
spring model is O(N3) - Tinkering with spring models for non-linear MDS
- 1992 k-d tree spatial subdivision for an
O(N2logN) algorithm - 1996 stochastic sampling for an O(N2) algorithm
- 2002 hybrid multistage algorithm, O(N?N)
- 2003 hybrid multistage algorithm, O(N5/4 ) using
pivots - Antarctic data test set for non-Equator work
- Possible integration into CAVE? Coupling infovis
and urban vis?
3HIVE a Toolkit and Workspace for InfoVis
4Spring Model An Iterative Non-Linear MDS
Algorithm
5O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
6O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
7O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
8O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
9O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
10O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
11O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
12O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
13O(N?N) MDS algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
14O(N?N) MDS algorithm
Interpolation is the most complex
phase Specifically, the parent-finding stage of
interpolation We used the Antarctic data as a
test set when working to improve this algorithm
- Select ?N subset of objects O(?N)
- Create 2D layout of subset using 96 algorithm
O(N) - Interpolate remaining objects
O(N?N) - Fine-tune layout with k 96 algorithm iterations
O(N)
15Pivots Improving Parent Search
Use pivots to discretise inter-object
distances An array of distances from k pivots
Later searches will use this k-dimensional space
16Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
A
17Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
18Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
3
2
1
B
19Performance Stress
20Performance Time
- 108000 elements in 360 seconds
21Pivots in 14D Antarctic Data
22Springs v. PCA on 17D Antarctic Data
23Springs v. PCA on 17D Antarctic Data
24Sensor Failure in the Antarctic Data
25Conclusion
- Antarctic data set real data for our algorithms
and HIVE toolkit - Quick good layouts of large-ish data sets on your
mothers PC - O(N5/4) time, 100000 objects, 4 papers
- Layouts made sense but no take-up by env
scientists - Exploratory data analysis v. simple standard
questions in practice? - A few HIVE components passed to Nottm grid folks
- Fisheye tables not the hardcore spring stuff or
the overall toolkit - Greg case study of HIVE in social science, then
writing up PhD - Alistair recent PhD, now RA looking at MIAS data
and PinPlay
26matthew_at_dcs.gla.ac.uk www.dcs.gla.ac.uk/matthew
www.equator.ac.uk