Improving Hybrid MDS Application to Antarctic Data - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Improving Hybrid MDS Application to Antarctic Data

Description:

... MDS. Application to Antarctic Data. Matthew Chalmers, Alistair Morrison, Greg Ross ... Alistair: recent PhD, now RA looking at MIAS data and Pin&Play ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 27
Provided by: morr48
Category:

less

Transcript and Presenter's Notes

Title: Improving Hybrid MDS Application to Antarctic Data


1
Improving Hybrid MDS Application to Antarctic
Data
  • Matthew Chalmers, Alistair Morrison, Greg Ross
  • University of Glasgow

2
Introduction
  • Visualising multidimensional (gt3D) data
  • Standard MDS fast, but just a linear combination
    of input dimensions
  • Non-linear MDS more detail/structure, but simple
    spring model is O(N3)
  • Tinkering with spring models for non-linear MDS
  • 1992 k-d tree spatial subdivision for an
    O(N2logN) algorithm
  • 1996 stochastic sampling for an O(N2) algorithm
  • 2002 hybrid multistage algorithm, O(N?N)
  • 2003 hybrid multistage algorithm, O(N5/4 ) using
    pivots
  • Antarctic data test set for non-Equator work
  • Possible integration into CAVE? Coupling infovis
    and urban vis?

3
HIVE a Toolkit and Workspace for InfoVis
4
Spring Model An Iterative Non-Linear MDS
Algorithm
5
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

6
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

7
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

8
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

9
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

10
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

11
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

12
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

13
O(N?N) MDS algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

14
O(N?N) MDS algorithm
Interpolation is the most complex
phase Specifically, the parent-finding stage of
interpolation We used the Antarctic data as a
test set when working to improve this algorithm
  • Select ?N subset of objects O(?N)
  • Create 2D layout of subset using 96 algorithm
    O(N)
  • Interpolate remaining objects
    O(N?N)
  • Fine-tune layout with k 96 algorithm iterations
    O(N)

15
Pivots Improving Parent Search
Use pivots to discretise inter-object
distances An array of distances from k pivots
Later searches will use this k-dimensional space
16
Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
A
17
Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
18
Pivots Improving Parent Search
Use pivots to discretise inter-object
distances an array of distances from k pivots
Later searches will use this k-dimensional space
3
2
1
B
19
Performance Stress
20
Performance Time
  • 108000 elements in 360 seconds

21
Pivots in 14D Antarctic Data
22
Springs v. PCA on 17D Antarctic Data
23
Springs v. PCA on 17D Antarctic Data
24
Sensor Failure in the Antarctic Data
25
Conclusion
  • Antarctic data set real data for our algorithms
    and HIVE toolkit
  • Quick good layouts of large-ish data sets on your
    mothers PC
  • O(N5/4) time, 100000 objects, 4 papers
  • Layouts made sense but no take-up by env
    scientists
  • Exploratory data analysis v. simple standard
    questions in practice?
  • A few HIVE components passed to Nottm grid folks
  • Fisheye tables not the hardcore spring stuff or
    the overall toolkit
  • Greg case study of HIVE in social science, then
    writing up PhD
  • Alistair recent PhD, now RA looking at MIAS data
    and PinPlay

26
matthew_at_dcs.gla.ac.uk www.dcs.gla.ac.uk/matthew
www.equator.ac.uk
Write a Comment
User Comments (0)
About PowerShow.com