Muon Catalyzed Fusion CF - PowerPoint PPT Presentation

About This Presentation
Title:

Muon Catalyzed Fusion CF

Description:

D2/T2 a-sticking, dt formation. T2 tt-fusion, He accumulation. CF with high ... am excited states and its time evolvement (Kb/Karatio, Doppler width) ... – PowerPoint PPT presentation

Number of Views:239
Avg rating:3.0/5.0
Slides: 26
Provided by: Ish63
Category:

less

Transcript and Presenter's Notes

Title: Muon Catalyzed Fusion CF


1
Muon Catalyzed Fusion (µCF)
NuFact02 4 July 2002 Imperial College, London
  • K. Ishida (RIKEN)
  • Principle of µCF
  • Topics
  • D2/T2 a-sticking, dtµ formation
  • T2 tt-fusion, He accumulation
  • µCF with high intensity muon beams
  • in collaboration with
  • K. Nagamine1,2, T. Matsuzaki1, S. Nakamura1,
    N. Kawamura1,
  • Y. Matsuda1, A. Toyoda3, H. Imao3, M. Kato4,
    H. Sugai4, M. Tanase4,
  • K. Kudo5, N. Takeda5, G.H. Eaton6
  • 1RIKEN, 2KEK, 3U. Tokyo, 4JAERI, 5AIST, 6RAL
  • present address KEK, U. Tohoku

2
Principle of Muon Catalyzed Fusion (µCF)
  • 1.Muon injected in D2T2 mixture
  • behaving like heavy electron
  • 2.Coulomb barrier shrinks
  • in small dtµ molecule
  • (nuclear distance
  • 1/200 of DT molecule)
  • 3.Muon released after d-t fusion
  • and find another d-t pair to fuse
  • ?Muon working as catalyst
  • of d-t fusion

3
µCF (Motivation)
  • Exotic atoms and molecules
  • atomic physics in small scale
  • rich in few body problems
  • dt fusion and alpha-sticking
  • dtµ levels and formation
  • atomic collisions, muon transfer
  • cooperation between experiment and theory
  • 4060 in µCF01 Conference
  • Prospect for applications (fusion neutron source,
    fusion energy)
  • muon production cost (5 GeV)
  • vs
  • fusion output (17.6 MeV x 200?)
  • very close to breakeven

4
Maximizing µCF Cycle
  • Observables
  • (1) Cycling rate lc (?)(vs l0 muon life)
  • rate for completing one cycle
  • dtµ formation tµ D2 ?(dtµ)dee
  • (2) Muon loss W (?)
  • muon loss per cycle
  • muon sticking to a-particle is the main loss
  • Number of fusion per muon
  • Yn f?c/?n 1/(?0/f?c)W (?)

5
Present status of µCF understanding
  • dtµ molecule formation
  • unexpectedly high dtµ formation rate (109 /s)
    was understood
  • by Vesman mechanism of resonant molecular
    formation
  • still many surprises
  • density dependence
  • low temperature solid state effect

6
Present status of µCF understanding
  • am Sticking probability
  • main source of muon loss from µCF cycle
  • discrepancy between theory and experiments

7
Muon to alpha sticking and X-rays
  • Main loss process of muons W ?s ...
  • Ultimate obstacle for µCF(Yn lt 1/?s)
  • Previous experiments determine W from
  • fusion neutron and subtract possible other losses

Final Sticking(? neutron yield) ws (1-R)
ws0 Initial sticking ws0 ? dt-fusion in
dtm Reactivation R ? am (3.5MeV) atomic
process X-ray measurement Y(Ka) gKaws0, Y(Kb)
gKbws0 Direct measurement of initial sticking
ws0 am excited states and its time evolvement
(Kb/Karatio, Doppler width)
8
µCF at RIKEN-RAL Muon Facility
Proton beam line
  • RIKEN-RAL Muon at ISIS (1994)
  • Intense pulsed muon beam
  • (70ns width, 50 Hz)
  • 800MeV x 200µA proton
  • 20150MeV/c µ/µ- muon
  • 105 µ-/s (55MeV/c)

Slow µ
µA etc
µSR
µCF experiment
9
µCF Experiment at RIKEN-RAL
  • Use of strong pulsed muon beam
  • Tritium handling facility
  • Detectors with calibration (fusion neutrons,
    X-rays)
  • Stopping muon number(µe decay and µBe X-ray)
  • Determine basic parameters and find the
    condition for improving efficiency
  • ?c, W, X-ray emission
  • ? a sticking probability and other loss
    processes
  • reaction rates (dtµ formation rate, muon
    transfer etc)

10
Muon to alpha sticking
  • Observation of x-rays from ma sticking under huge
    bremsstrahlung b.g.
  • with intense pulsed muon beam at RIKEN-RAL
  • Y(Ka),Y(Kb) Ka,Kb x-ray per fusion

11
Measure neutron (effective sticking) and
aµX-ray (initial sticking) in the same experiment
12
Result of X-ray and neutron measurement
  • Effective sticking ws (0.52) lt theoretical
    calculations (0.60)
  • X-ray yield Yx(Ka) (0.27) calc.

13
a-stiking
  • Understanding the result
  • (1) ionization from n?3 are much faster than
    radiative transition or
  • (2) initial sticking to n?3 only is anomalously
    smaller (???)
  • next step
  • improving sticking x-ray data from ddm PSI,
    ttmRIKEN to compare reactivation effect

Ionization
ngt3
effective sticking ws 0.52 lt calc 0.6 ma Ka
X-ray Yx(Ka) 0.27 calc Y(Kb)/ Y(Ka) 7-1
ltltcalc(12)
0.09
n3
g
K
b
2p
0.03
2s
g
K
a
0.10
1S
Excita-
Deexcita-
0.68
tion
tion
Initial
am
Effective Sticking
Sticking
w
0
s
14
Muon transfer to helium-3
µ
a
t
  • (Another important loss process)
  • (x3Heµ) (Xp,d,t) molecule formation
  • (xµ) He -gt (xHeµ)
  • theoretically predicted Popov, Kravtsov
  • first observed in D24He KEK 1987
  • then also in D23He KEK 1989
  • and T23He RIKEN 1996
  • formation rates
  • radiative non-rad decay
  • Kamimura, KEK/RIKEN
  • fusion in d3Hem (Dubnaa, PSI)

15
µCF in pure T2
  • 1) tt-fusion at very low energy
  • t t ?ann(Q14MeV)
  • one neutron carries more energy
  • than statistical dist.
  • strong am correlation
  • (5He resonance state)
  • 2) t3Heµ decay mode etc
  • radiative decay branch
  • (competition with particle decay)
  • 20 d3Heµ
  • 50 d4Heµ
  • gt90 t3Heµ
  • 3) sticking from ttµ fusion

t3Heµ
am Ka
16
dtµ, ddµ formation (Nonequilibrium and
ortho/paraeffect)
  • Effect of D2, DT, T2 molecular composition
  • in dtµ-formation
  • tµ D2 -gt (dtµ)dee
  • tµ DT -gt (dtµ)tee
  • D2 T2 ? 2DT proceeds gradually (56 hours at
    20K) after DT mixture
  • gradual decrease of fusion neutron yield
  • ?dtµ0,D2/2 208 µs-1 (200 _at_ psi)
  • ?dtµ0,DT 94 µs-1 (10 _at_ psi) (preliminary!)
  • Ortho-para effect(at RAL TRIUMF)
  • Toyoda, Ishida, Nagamine
  • Ortho D2(J0,2,..) normal D2(orthopara21)
  • dµ D2 -gt (ddµ)dee fusion proton
  • Ortho vs normal 1530 reduction in ddµ
    formation
  • first indication of ortho-para effect
  • Opposite to a simple theory based on gas model

D2T2
D2T2DT
?c
E2(E-?E)
d
p
µ
E1(?E)
17
µCF by other groups
  • PSI
  • strongest muon beam
  • fusion neutron, ion chamber, X, g, ...
  • TRIUMF
  • thin solid layer target, energetic dµ, tµ
  • Dubna
  • fusion neutron, high temperature, high pressure,
    H/D/T mixture
  • LAMPF
  • fusion neutron, high temperature, high pressure

18
µCF and exotic atoms Conferences
  • International Conference on mCF
  • 22-26 April, 2001 (Shimoda, Japan) was hosted by
    RIKEN
  • 100 participants
  • following Tokyo (1986), Leningrad(1987),
  • Florida(1988), Oxford(1989), Wien(1990),
  • Uppsala (1993), Dubna (1995), Ascona (1998)
  • there will be EXA02 in Wien in Nov

19
µCF with High Intensity Muon Beam
  • 1)Measurement and control of µCF with expanded
    target condition
  • (dtµ formation, a sticking)
  • high temperature, high density D/T target
  • naturally more µCF expected
  • plasma (reducing dE/dx)
  • atomic and molecular states
  • (vibrational rotational levels by laser,
    ortho-para)

20
µCF with High Intensity Muon Beam
  • 2)Precise measurement of X-rays
  • with improvement of beam, detectors, and target
    system
  • 1) X-ray intensity ratio(Ka, Kb, Kg, L)
  • transition between levels
  • 2) Doppler shift
  • aµ velocity(dE/dx)
  • 3) 2keV dµ, tµ Ka X-rays
  • q1s problem, radiationless transition
  • Detectors
  • pileup ? segmentaiton (Ge ball, Strip Si)?flash
    ADC
  • energy resolution ?diffraction spectrometer,
    calorimeter
  • low energy(2keV) ?thin window(or solid layer)
  • Intense muon beam
  • sharp and monochromatic beam -gt good S/N ratio

21
MuCF with High Intensity Muon Beam
  • 3) exotic (am) beam extraction and interaction
  • For systematic study of atomic process and
    stopping power (dE/dx)
  • to solve am sticking mystery
  • Atomic collision of (am) was estimated
  • only by scaling from normal atomic collision
  • or purely by theoretical calculation
  • we can measure
  • reactivation?excitations (X-rays)
  • Estimation of (am) beam yield at RIKEN-RAL
  • 1000 m stop in (5cm x 5cm x 4 mg/cm2)
  • X 20 fusion/m (?)
  • X 0.01 (sticking) X 0.01 (spectrometer)
  • 2 /sec (am) of 3.5MeV energy

22
Exotic beams with µCF
  • 4) applications of µCF
  • keV µ- beam
  • extract 10keV µ- released after dt-fusion
  • K. Nagamine, P. Strasser

solid D/T
keV µ- collector
incoming muons
23
µCF with High Intensity Muon Beam
  • 5) Applications of µCF
  • Intense fusion neutron source

MUCATEX-ENEA design
d beam
D-T target
production target
irradiated materials
24
µCF with High Intensity Muon Beam
  • 6) µCF for power generation

K. Nagamine
25
Summary
  • with High Intensity Muon Source
  • further understanding of basic processes
  • precise X-ray measurement
  • towards break-even with extreme target
    conditions
  • more exotic beams (aµ beam, slow µ- etc)
  • generation of fusion neutrons power
Write a Comment
User Comments (0)
About PowerShow.com