Title: Hemodynamics nonlinear state space : the Balloon Model
1Hemodynamics non-linear state space the
Balloon Model
CISP Workshop, May 2004
- Thomas Deneux
- PhD student Odyssee vision team
- ENS Paris (Ecole Normale Supérieure) - INRIA
(National Research Institute in Automatic
Informatics) - France
2Time series in fMRI
3The Hemodynamic Response Function (HRF)
4The linear assumption
stimulus
BOLD (fMRI) response
HRF
5Physiology
6The Balloon Model
blood inflow
blood volume
deoxyhemoglobin
BOLD signal
7State-space formulation
8Some simulations
9Simulations (2)
10Noise in the Model
measure noise
evolutive noise
evolutive measure noise
11Estimation of parameters Deterministic
12Simulations
neural activity spikes over 600s theoretical
noisy responses sampled every 1s
13Results
? 2.71 (1) ks 0.71 (0.65) kf 0.46
(0.4) ? 0.53 (0.98) ? 0.95 (0.38) E0
0.49 (0.34)
? 0.928 (1) ks 0.647 (0.65) kf 0.399
(0.4) ? 1.001 (0.98) ? 0.352 (0.38) E0
0.313 (0.34)
14Results (2)
noisier data (variance 50 signal)
parameter estimation
? 1.10 (1) ks 0.56 (0.65) kf 0.38
(0.4) ? 0.955 (0.98) ? 0.305 (0.38) E0
0.605 (0.34)
15True Data
16Problem of local minima
- use non deterministic estimation methods(Markov
Chain Monte Carlo) - adress the mathematical problem of the expression
of the parameters(is the parameters set
over-complete ?)
17Enhance the model
- Consider evolutive noise (next slide)
- Use a priori on the parameters Bayesian scheme
maximize posterior distribution - Spatial extend of the parameters introduce a
spatial smothness term
18Model with evolutive noise
- The likelihood is now
- with
19- Maximizing the likelihood wrt. ? is untractable
- use of an EM algorithm
- the system need to be linearized
20EM algorithm
- E-step compute a gaussian approximationIt
consists in computing mean, variances and
covariances for X using the Kalman smoother. - M-step minimize wrt. ? the Q-averaged log
likelihood