Molecular Dynamics Simulation of Thermal Conduction over SiliconGermanium Interface - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Molecular Dynamics Simulation of Thermal Conduction over SiliconGermanium Interface

Description:

Erica Saltzman. Zhi Tang. Purpose. Thermal conductivity ( ) a measure of thermal transport ... 6. S.Q. Zhou, G. Chen, J.L. Liu, X.Y. Zheng, and K.L. Wang, HTD Proc. ... – PowerPoint PPT presentation

Number of Views:299
Avg rating:3.0/5.0
Slides: 16
Provided by: ericasa
Category:

less

Transcript and Presenter's Notes

Title: Molecular Dynamics Simulation of Thermal Conduction over SiliconGermanium Interface


1
Molecular Dynamics Simulation of Thermal
Conduction over Silicon-Germanium Interface
  • Ruxandra Costescu
  • Erica Saltzman
  • Zhi Tang

2
Purpose
  • Thermal conductivity (?) ? a measure of thermal
    transport
  • ? behavior across interfaces is little-understood
    and drastically different from bulk behavior
    interface thermal conductance (C) is significant
    for ultra-thin films (100 nm).
  • Si and Ge are important to semiconductor and
    microelectronics industries

3
Previous Research
  • Multilayer and superlattice structures have been
    investigated experimentally and through
    simulation, but the behavior across a
    single-interface remains poorly described and
    explained (4).
  • Several MD methods have been attempted
  • Direct MD, which exhibits inefficient convergence
    (2)
  • Equilibrium MD, which is strongly dependent on
    the initial conditions and has a
    slowly-converging autocorrelation function (2).
  • MD with non-equilibrium thermodynamics
    (thermostat and zero-limited thermal force)
    yields best results (11).

4
Geometry
Visualization of silicon-germanium beam. Yellow
spheres represent germanium atoms green spheres
represent silicon atoms.
Hot and cold baths in silicon-germanium beam.
5
Boundary Conditions
  • Periodic in lateral dimensions
  • Hard-wall in longitudinal dimension

6
Temperature Regulations
  • Initial conditions hot, cold, and intermediate
    temperatures
  • Velocity rescaling in hot and cold reservoirs

7
Tersoff Potential
Parameters
8
Calculations
9
(No Transcript)
10
Results
Simulation results
Typical data
  • At 120 K

Temperature profile
Thermal flux
11
Results
Results
Calculations
  • Thermal conductivity
  • NOTES
  • In addition one run at 77.1 K (with opposite
    direction of thermal gradient) and another run
    at 19.1K
  • Used Fe 0.2 Å-1 (2)

12
Results
Calculations
  • Interface conductance results

13
Results
Discussion
  • ?SiGe(MD) smaller than ?eq as expected and the
    right order of magnitude but dependence on
    temperature unclear
  • DMM prediction of 108 W/(m2 K) at 80 K
    reasonably close to calculated range of CSi/Ge
  • Our values range from 2 - 5 ? 107 W/(m2 K)
    ? the right order
    of magnitude of C
  • Preliminary calculation for opposite direction of
    temp. gradient shows drastically different
    behavior (approximations fail?)

14
Results
Improvements further study
  • Fe (fictitious force)
  • quantum correction
  • direction of temperature gradient
  • interface geometry
  • compare t.c. results to exactly equivalent
    experimental data

15
References
  • 1. S.M. Lee, D.G. Cahill, and R.
    Venkatasubramanian, Appl. Phys. Lett. 70 22
    (1997) 2957.
  • 2. S. Berber, Y.K. Kwon, and D. Tomanek, Phys.
    Rev. Lett. 84 20 (2000) 4613.
  • 3. D.G. Cahill, A. Bullen, and S.-M. Lee, High
    temp. - High press. 32 (2000) 134.
  • 4. S. Volz, J.B. Saulnier, G.Chen, and P.
    Beauchamp, Microelect. J. 75 14 (1999) 2056.
  • 5. J. Zi, K. Zhang and X. Xie, Appl. Phys. Lett.
    57 2 (1990) 165.
  • 6. S.Q. Zhou, G. Chen, J.L. Liu, X.Y. Zheng, and
    K.L. Wang, HTD Proc. of ASME Heat Transfer
    Division 361-4 (1998) 249.
  • 7. M. Dornheim and H. Teichler, Phys. Stat. Sol.
    (A) 171 (1999) 267.
  • 8. M.A. Osman and D. Srivastava, Nanotechn. 12
    (2001) 21.
  • 9. J. Che, T. Cagin, and W. A. Goddard, Nanotec.
    11 (2000) 65.
  • 10. S.G. Volz and G. Chen, Appl. Phys. Lett. 75
    14 (1999) 2056.
  • 11. A. Maeda and T. Munakata, Phys. Rev. E, 52 1
    (1995) 234.
  • 12. A. Maiti, G.D. Mahan, and S.T. Pantelides,
    Solid-State Communications 102 7 (1997) 517.
  • 13. S. Petterson and G.D. Mahan, Phys. Rev. B, 42
    12 (1990) 7386.
  • 14. R. Stoner and H.J. Maris, Phys. Rev. B, 48 22
    (1993) 16373.
  • 15. E.T. Swartz and R.O. Pohl, Rev. Mod. Phys.,
    61 (1989) 605.
  • 16. S. Matsumoto, S. Munejiri, and T. Itami,
    National Space Development Agency of Japan, Space
    Utilization Program Document. Available URL
    http//jem.tksc.nasda.go.jp/utiliz/surp/ar/diffusi
    on/3_6_.pdf.
  • 17. J. Tersoff, Phys. Rev. B, 37 (1988) 6991.
  • 18. J. Tersoff, Phys. Rev. B, 39 (1989) 5566.
  • 19. D.W. Brenner, Phys. Rev. B, 42 (1990) 9458.
Write a Comment
User Comments (0)
About PowerShow.com