BPM Seminar understandability of process models - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

BPM Seminar understandability of process models

Description:

Defining understanding as a result of learning, how do differences in user ... Volitional dimension. Goal. Approach to Learning. Commitment. Three Variables. Presage ... – PowerPoint PPT presentation

Number of Views:86
Avg rating:3.0/5.0
Slides: 52
Provided by: san86
Category:

less

Transcript and Presenter's Notes

Title: BPM Seminar understandability of process models


1
BPM Seminarunderstandability of process models
  • A users perspective on learning

2
Topics
  • Context of the research
  • Theoretical Background
  • Theoretical Design Conceptualisation
  • Measurement
  • Questions?

3
1. Context of the research
  • Goal
  • Defining understanding as a result of learning,
    how do differences in user characteristics
    contribute to differences in understanding
    process models?

4
An example
5
Kick-off
  • Curtis et al. (1992)
  • Goal
  • facilitate human understanding and
    communication
  • Sub-goal
  • represent processes in forms understandable by
    humans

6
Gap-analysis
  • Independent variables
  • The effect of
  • task complexity
  • technology/process model characteristics
  • on performance

7
Visualisation
8
Gap-analysis II
  • Understandability defined as an intrinsic
    property of a process model
  • Complexity, learnability, usability, etc.
  • Pragmatic quality

9
Why is this important?
  • Practically
  • ) helps representing processes in forms
    understandable by humans
  • ) additional insights allow for more effective
    training
  • Academically
  • ) effects of users often averaged out by
    assuming homogeneity (or x vs. y)
  • ) Maturity of the discipline will benefit from
    an interdisciplinary approach

10
2. Theoretical background
  • To learn is to be human
  • (Goward)

11
Theory of Cognitive Load
  • Define information integration as a learning
    process
  • Control factors of
  • Content
  • Content Presentation

12
An example
13
Learning Conceptualised
14
Revisions
  • Controlled Learning Context
  • Limited Mutuality

15
Controlling the Learning Context
  • HOW?

16
3. Theoretical Design Conceptualisation
a Cognitive Perspective onLearning
17
Structure
  • Gap Analysis
  • Introduction of a framework
  • Integration into learning theory

18
Prior to Learning
19
User CharacteristicsGap analysis
20
Input User Characteristics
  • Identification of a framework which
    conceptualises user characteristics in an
    integrative manner
  • Problem-solving is inherent to human nature
  • Usage of goal-setting behavioural theory

21
Goal-setting Behavioural Theory
22
Eight Variables
23
During Learning
24
Knowledge ConstructionGap analysis
  • Static Approach hence limited availability
  • Cardoso et al. (2006)
  • short- and long-term memory
  • chunking and tracing
  • Hungerford et al. (2004)
  • Task Planning
  • Others, e.g. Central vs. Peripheral, Queues

25
Throughput Knowledge Construction
  • Identification of a framework that describes
    Knowledge Creation
  • Mandviwalla Hovav (1995)
  • Motivational process

26
Motivational Hub (Locke, 1991)
27
Three Variables
28
After Learning
29
Learning OutcomeGap analysis
30
Output Learning Outcome
  • Identification of a framework which
    distinguishes between different types of
    understanding

31
Motivational Hub (Locke, 1991)
32
Three Variables
33
Time Out
34
Variables Explained
  • Eight Presage
  • Three Process
  • Three Product

35
User Characteristics
36
Knowledge Construction
37
Learning Outcome
38
4. Measurement
39
Configuration
  • What to measure?
  • How to measure?
  • Who to sample?

40
What to measure?
  • Due to model complexity,
  • test a part of the model
  • a) Personal data prior to learning
  • b) Information of their learning approach
    during learning
  • c) Questions on understanding post learning

41
a) Personal Data
  • What to collect?
  • Distal Variables Personality?
  • Demographics?
  • Culture?
  • Skills Reading skills?
  • Studying skills?
  • Modelling skills?

42
Examples of Frameworks
  • Frederiks Weide (2006) Analysis Skills
  • incl. Handle implicit knowledge, grammatical
    analysis, abstract sentence structure, think on
    an abstract level
  • Bandara et al. (2007) Content for IS Subjects
  • From focus group analytical skills, understand
    the problem, ability to communicate with client
  • Lindland et al. (1994) Quality
  • Syntactic, Semantic Pragmatic Quality
  • Vanderfeesten et al. (2007) Complexity metrics
  • incl. Coupling, Cohesion, Modularity

43
Skills
  • Syntactic Skills a) Word comprehension
  • b) Vocabulary syntax
  • II) Identify obstacles
  • Semantic Skills c) Spatial ability
  • c) BMP modelling discourse
  • d) experience/past behavioural skills
  • I) studying habits
  • II) identify obstacles
  • Pragmatic Skills e) Working memory
  • e) Integration capacity
  • f) Real time self-evaluation
  • I) Develop effective strategies
  • II) Problem-solving
  • IV) Emotional stability

44
b) Learning Approach
  • Methods available
  • Yet, is this useful?

45
c) Understanding
  • Methods available
  • Only cognitive measurement?
  • Indicators Recall Transfer
  • Question answered correctly
  • Problem solving
  • Time?
  • Incorporation of affective constructs

46
How to measure?
  • Qualitative vs. Quantitative

47
Fixed vs. Loose
  • Should respondents be provided with a goal?
  • Should meaningful learning be the outcome to aim
    for?

48
Tests, tests, tests
  • some examples
  • Spatial ability test
  • Working memory
  • integration test
  • Reading ability
  • Understanding of story
  • Problem solving
  • Cloze Recall test
  • Cognitive Coupling

49
Who to sample?
  • Controlling the Learning Context
  • vs.
  • homogeneity of population
  • Assume group differences (e.g. expert/novice)
  • vs.
  • differences by measurement

50
Encore un fois
51
5. Questions?
  • ?
Write a Comment
User Comments (0)
About PowerShow.com