Artificial Intelligence 15381 Heuristic Search Methods - PowerPoint PPT Presentation

About This Presentation
Title:

Artificial Intelligence 15381 Heuristic Search Methods

Description:

Let C( method ,b,d) = max number of Si visited. C( method ,b,d) ... 'Ragged'fringe expansion. Does BestFS guarantee optimality? Beyond Greedy Search. Beam Search ... – PowerPoint PPT presentation

Number of Views:526
Avg rating:3.0/5.0
Slides: 22
Provided by: rcp6
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: Artificial Intelligence 15381 Heuristic Search Methods


1
Artificial Intelligence 15-381Heuristic Search
Methods
  • Jaime Carbonell
  • jgc_at_cs.cmu.edu
  • 17 January 2002
  • Today's Agenda
  • Island Search Complexity Analysis
  • Heuristics and evaluation functions
  • Heuristic search methods
  • Admissibility and A search
  • B search (time permitting)
  • Macrooperators in search (time permitting)

2
Complexity of Search
  • Definitions
  • Let depth d length(min(s-Path(S0, SG)))-1
  • Let branching-factor b Ave(Succ(Si))
  • Let backward branching B Ave(Succ-1(Si))
    usually bbb, but not always
  • Let C(ltmethodgt,b,d) max number of Si visited
  • C(ltmethodgt,b,d) worst-case time complexity
  • C(ltmethodgt,b,d) lt worst-case space complexity

3
Complexity of Search
  • Breadth-First Search Complexity
  • C(BFS,b,d) ?i0,dbi O(bd)
  • C(BBFS,b,d) ?i0,dBi O(Bd)
  • C(BiBFS,b,d) 2?i0,d/2bi O(bd/2), if bB
  • Suppose we have k evenly-spaced islands in
    sPath(S0, SG), then
  • C(IBFS,b,d) (k1) ?i0,d/(k1)bi O(bd/(k1))
  • C(BiIBFS,b,d) 2 (k1) ?i0,d/(2k2)bi
    O(bd/(2k2))

4
Heuristics in AI Search
  • Definition
  • A Heuristic is an operationally-effective nugget
    of information on how to direct search in a
    problem space. Heuristics are only approximately
    correct. Their purpose is to minimize search on
    average.

5
Common Types of Heuristics
  • "If-then" rules for state-transition selection
  • Macro-operator formation discussed later
  • Problem decomposition e.g. hypothesizing islands
    on the search path
  • Estimation of distance between Scurr and SG.
    (e.g. Manhattan, Euclidian, topological distance)
  • Value function on each Succ(Scurr)
  • cost(path(S0, Scurr)) Ecost(path(Scurr,SG))
  • Utility value(S) cost(S)

6
Heuristic Search
  • Value function E(o-Path(S0, Scurr), Scurr, SG)
  • Since S0 and SG are constant, we abbreviate
    E(Scurr)
  • General Form
  • Quit if done (with success or failure), else
  • s-Queue F(Succ(Scurr),s-Queue)
  • Snext ArgmaxE(s-Queue)
  • Go to 1, with Scurr Snext

7
Heuristic Search
  • Steepest-Ascent Hill-Climbing
  • F(Succ(Scurr), s-Queue) Succ(Scurr)
  • No history stored in s-Queue, hence Space
    complexity max(b) O(1) if b is bounded
  • Quintessential greedy search
  • Max-Gradient Search
  • "Informed" depth-first search
  • Snext ArgmaxE(Succ(Scurr))
  • But if Succ(Snext) is null, then backtrack
  • Alternative backtrack if E(Snext)ltE(Scurr)

8
Beyond Greedy Search
  • Best-First Search
  • BestFS(Scurr, SG, s-Queue)
  • IF Scurr SG, return SUCCESS
  • For si in Succ(Scurr)
  • Insertion-sort(ltSi, E(Si)gt, s-Queue)
  • IF s-Queue Null, return FAILURE
  • ELSE return
  • BestFS(FIRST(s-Queue), SG,
    TAIL(s-Queue))

9
Beyond Greedy Search
  • Best-First Search (cont.)
  • F(Succ(Scurr)), s-Queue)
    Sort(Append(Succ(Scurr), Tail(s-Queue)),E(si))
  • Full-breadth search
  • "Ragged"fringe expansion
  • Does BestFS guarantee optimality?

10
Beyond Greedy Search
  • Beam Search
  • Best-few BFS
  • Beam-width parameter
  • Uniform fringe expansion
  • Does Beam Search guarantee optimality?

11
A Search
  • Cost Function Definitions
  • Let g(Scurr) actual cost to reach Scurr from S0
  • Let h(Scurr) estimated cost from Scurr to SG
  • Let f(Scurr) g(Scurr) h(Scurr)

12
A Search Definitions
  • Optimality Definition
  • A solution is optimal if it conforms to the
    minimal-cost path between S0 and SG. If
    operators cost is uniform, then the optimal
    solution shortest path.
  • Admissibility Definition
  • A heuristic is admissible with respect to a
    search method if it guarantees finding the
    optimal solution first, even when its value is
    only an estimate.

13
A Search Preliminaries
  • Admissible Heuristics for BestFS
  • "Always expand the node with min(g(Scurr))
    first." If Solution found, expand any Si in
    s-Queue where g(Si) lt g(SG)
  • Find solution any which way. Then Best FS(Si)
    for all intermediate Si in solution as follows
  • If g(S(1curr) gt g(SG) in previous, quit
  • Else if g(S(1G lt g(SG), SolSol1, redo (1).

14
A Better Admissible Heuristics
  • Observations on admissible heuristics
  • Admissible heuristics based only on look-back
    (e.g. on g(S)) can lead to massive inefficiency!
  • Can we do better?
  • Can we look forward (e.g. beyond g(Scurr)) too?
  • Yes, we can!

15
A Better Admissible Heuristics
  • The A Criterion
  • If h(Scurr) always equals or underestimates the
    true remaining cost, then f(Scurr) is admissible
    with respect to Best-First Search.
  • A Search
  • A Search BestFS with admissible f g h
    under the admissibility constraints above.

16
A Optimality Proof
  • Goal and Path Proofs
  • Let SG be optimal goal state, and s-path (S0, SG)
    be the optimal solution.
  • Consider an A search tree rooted at S0 with S1G
    on fringe.
  • Must prove f(SG2) gt f(SG) and g(path(S0, SG)) is
    minimal (optimal).
  • Text proves optimality by contradiction.

17
A Optimality Proof
  • Simpler Optimality Proof for A
  • Assume s-Queue sorted by f.
  • Pick a sub-optimal SG2 g(SG2) gt g(SG)
  • Since h(SG2) h(SG) 0, f (SG2) gt f (SG)
  • If s-Queue is sorted by f, f(SG) is selected
    before f(SG2)

18
B Search
  • Ideas
  • Admissible heuristics for mono- and bi-polar
    search
  • "Eliminates" horizon problem in game-trees more
    later
  • Definitions
  • Let Best(S) Always optimistic eval fn.
  • Let Worst(S) Always pessimistic eval fn.
  • Hence Worst(S) lt True-eval(S) lt Best(S)

19
Basic B Search
  • Basic B Search
  • B(S) is defined as
  • If there is an Si in SUCC(Scurr)
  • s.t. For all other Sj in SUCC(Scurr), W(Si) gt
    B(Sj)
  • Then select Si
  • Else ProveBest (SUCC(Scurr)) OR DisproveRest
    (SUCC(Scurr)
  • Difficulties in B
  • Guaranteeing eternal pessimism in W(S) (eternal
    optimism is somewhat easier)
  • Switching among ProveBest and DisproveRest
  • Usually W(S) ltlt True-eval(S) ltlt B(S) (not
    possible to achieve W(Si) gt B(Sj)

20
Macrooperators in Search
  • Linear Macros
  • Cashed sequence of instantiated operators
  • If S0 ---opi? S1 ---opj?S2
  • Then S0 opi,j? S2
  • Alternative notation
  • if opj(opi(S0)) S2, Then opi,j(S0) S2
  • Macros can have any length, e.g. oi,j,k,l,m,n
  • Key question do linear macoros reduce search?

21
Macrooperators in Search
  • Disjunctive Macros
  • Iterative Macros

op2
op3
op1
op4
op7
op5
op6
opk,l,m,n
Cond (s-Hist,SG)
opi,j
YES
NO
opo,p,q
Write a Comment
User Comments (0)
About PowerShow.com