Title: Reciprocal Trigonometry Functions
1Reciprocal Trigonometry Functions
Cosecant,
Secant
and Cotangent
Provided sin x ? 0, cos x ? 0 and tan x ? 0
Third letter rule
Example Find (3 dps)
Answers
(i) 1.035 (ii) -3.236 (iii) -0.176
2Graphs of cosec, sec and cot
The graphs of the reciprocal functions can be
found by taking the corresponding sine, cosine
and tangent graph and calculating the reciprocals
of each point on the graph.
3Graphs of cosec, sec and cot
4Graphs of cosec, sec and cot
5Examples
Find the exact values of
Answers
6Examples
Given that sin A 4/5, where A is obtuse, and
cosB ?3/2, where B is acute, find the exact
values of
Answers
7Trigonometric Identities
8Examples
Prove that (1 cos A)(1 sec A) ?? sin A tan A
L.H.S.
(1 cos A)(1 sec A) 1 sec A cos A Cos A
sec A
1 sec A cos A - 1
sec A cos A
sin A tan A
R.H.S.
9Examples
Prove that cot A tan A ? sec A cosec A
L.H.S.
R.H.S.
10Examples
R.H.S.
R.H.S.
11Solving equations
Solve 2 tan2 x 7 sec x 8 0 for 0 ? x ?
360?
2 (sec2x 1) 7 sec x 8 0
2 sec2x 2 7 sec x 8 0
2 sec2x 7 sec x 6 0
(2 sec x 3)(sec x 2) 0
sec x 3/2 or sec x 2
cos x 2/3 or cos x ½
x 48.2 or x 60
or x 360 48.2 or x 360 - 60
complete solution x 48.2? or 60? or 300? or
311.8?
12Solving equations
Solve 2 cos x cot x for 0 ? x ? 360?
2 cos x cos x/ sin x
2 cos x sin x cos x
2 cos x sin x cos x 0
cos x(2 sin x 1) 0
cos x 0 or sin x ½
cos x 0 ? x 90? or 270?
sin x ½ ? x 30? or 330?
complete solution x 30? or 90? or 270? or
30?
13Solving equations
Solve 3 cot2 x 10 cot x 3 0 for 0 ? x
? 2?
(3 cot x - 1)(cot x 3) 0
cot x 1/3 or cot x 3
? tan x 3 or tan x 1/3
tan x 3 ? x 1.24c or 4.39c
tan x 1/3 ? x 0.32c or 3.46c
complete solution x 0.32c or 1.24c or
3.46c or 4.39c
14Solving equations
Solve 5 cot2 x 2 cosec x 2 0 for 0 ? x
? 2?
5(cosec2 x 1) 2 cosec x 2 0
5cosec2 x 5 2 cosec x 2 0
5cosec2 x 2 cosec x - 3 0
sin x -5/3 not possible or sin x 1 ? x
?/2
15Additional formulae
sin (A B) sin A cos B sin B cos A
sin (A - B) sin A cos B - sin B cos A
cos (A B) cos A cos B - sin A sin B
cos (A - B) cos A cos B sin A sin B
16Examples
Find the exact value of sin 75?
sin (A B) sin A cos B sin B cos A
sin (30 45) sin 30 cos 45 sin 45 cos 30
17Examples
Express cos (x ?/3) in terms of cos x and sin x
cos (A B) cos A cos B - sin A sin B
cos (x ?/3) cos x cos ?/3 - sin ?/3 sin x
18Examples
L.H.S.
R.H.S.
19Double angle formulae
sin (A B) sin A cos B sin B cos A
sin (A A) sin A cos A sin A cos A
sin 2A 2 sin A cos A
cos (A B) cos A cos B - sin A sin B
cos (A A) cos A cos A- sin A sin A
cos (A A) cos2A - sin2A
cos 2A cos2A - sin2A
cos 2A 2cos2A - 1
cos 2A 1 2sin2A
20Double angle formulae
21Examples
Given that cos A 2/3, find the exact value of
cos 2A.
cos 2A 2cos2A - 1
Given that sin A ¼ , find the exact value of
sin 2A.
sin 2A 2 sin A cos A
22Solving equations
Solve cos 2A 3 4 cos A 0 for 0 ? x ? 2?
2 cos2A - 1 3 4 cos A 0
2 cos2A 4 cos A 2 0
cos2A 2 cos A 1 0
cos2A 2 cos A 1 0
(cos A 1)2 0
cos A - 1
? A ?
23Solving equations
Solve sin 2A sin A for - ? ? x ? ?
2sin A cos A sin A
2 sin A cos A sin A 0
sin A(2 cos A 1) 0
? sin A 0 or cos A ½
sin A 0 ? A - ? or 0 or ?
cos A ½ ? A - ?/3 or ?/3
Complete solution A - ? or - ?/3 or 0 or ?/3
or ?
24Solving equations
Solve tan 2A 5 tan A 0 for 0? x ? 2?
tan A 0 ? A 0 or ? or 2?
7 5tan2 A 0? tan A ? ?7/5 ? A 0.97 ,
2.27, 4.01 or 5.41c
Complete solution A 0.97 , 2.27, 4.01, 5.41c 0,
? or 2?
25Harmonic form
If a and b are positive
a sin x b cos x can be written in the form R
sin( x ? )
a sin x - b cos x can be written in the form R
sin( x - ? )
a cos x b sin x can be written in the form R
cos( x - ? )
a cos x - b sin x can be written in the form R
cos( x ? )
26Examples
Express 3 cos x 4 sin x in the form R cos( x -
? )
R cos( x - ? ) R cos x cos ? R sin x sin ?
3 cos x 4 sin x R cos x cos ? R sin x sin ?
R cos ? 3 1 R sin ? 4 2
12 22 R2 sin2 x R2 cos2 x 32 42
R2(sin2 x cos2 x ) 32 42
R2 32 42 25 ? R 5
2 ? 1 tan ? 4/3 ? ? 53.1
3 cos x 4 sin x 5 cos( x 53.1? )
27Examples
Express 12 cos x 5 sin x in the form R sin( x
? )
R sin( x ? ) R sin x cos ? R cos x sin ?
12 cos x 5 sin x R sin x cos ? R cos x sin ?
R cos ? 12 1 R sin ? 5 2
12 22 R2 cos2 x R2 sin2 x 122 52
R2(cos2 x sin2 x ) 122 52
R2 122 52 169 ? R 13
2 ? 1 tan ? 5/12 ? ? 22.6
12 cos x 5 sin x 13 sin( x 22.6? )
28Examples
Express cos x - ?3 sin x in the form R cos( x
? )
R cos( x ? ) R cos x cos ? - R sin x sin ?
cos x - ?3 sin x R cos x cos ? - R sin x sin ?
R cos ? 1 1 R sin ? ?3
2
12 22 R2 cos2 x R2 sin2 x 12
(?3 ) 2
R2(cos2 x sin2 x ) 12 3
R2 1 3 4 ? R 2
2 ? 1 tan ? ?3 ? ? 60
cos x ?3 sin x 2 cos( x 60? )
29Solving equations
Solve 7 sin x 3 cos x 6 for 0? x ? 2?
R sin( x ? ) R sin x cos ? R cos x sin ?
7 sin x 3 cos x R sin x cos ? R cos x sin ?
R cos ? 7 1 R sin ? 3 2
R2 72 32 ? R 7.62
2 ? 1 tan ? 3/7 ? ? 0.405c
(Radians)
7 sin x 3 cos x 7.62 sin( x 0.405)
7.62 sin( x 0.405 ) 6 ? x 0.405
sin-1(6/7.62)
x 0.405 0.907 or 2.235
x 0.502c or 1.830c