Title: Bilateral Mesh Denoising
1Bilateral Mesh Denoising
- Shachar FleishmanIddo DroriDaniel Cohen-Or
- Tel Aviv University
2Denoising
- Input (scanned) model
- Additive noise
3Denoising
- Input (scanned) model
- Additive noise
- Noise free model
- Preserve features
4Image denoising
- Wavelet denoising Donoho 95
- Anisotropic diffusion Perona Malik 90
- Bilateral filter Smith Brady 97, Tomasi
Manduchi 98 - Black et al. 98
- Anisotropic diffusion
- Robust statistics
- Elad 01, Durand Dorsey 02 relate
- Anisotropic diffusion
- Robust statistics
- Bilateral filter
5Original and noisy ( ?2900) images
Images courtesy of Michael Elad
6TV filtering 50 iterations 10
iterations (MSE146.3339)
(MSE131.5013)
Images courtesy of Michael Elad
7Wavelet Denoising (soft) Using DB5 Using
DB3 (MSE144.7436)
(MSE150.7006)
Images courtesy of Michael Elad
8Images courtesy of Michael Elad
9Mesh denoising, smoothing and fairing
- Adapt image denoising algorithms to meshes
- Wiener filter Peng et al. 01
- Isotropic diffusion Desbrun et al. 99
- Anisotropic diffusion of height fields Desbrun
et al. 00 - Anisotropic diffusion on meshes Clarenz et al.
00, Xu Bajaj 03 - Bilateral filter Choudhury Tumblin 03 Jones
et al. 03
10Bilateral mesh denoising
- Fast
- Simple
- Intuitive parameter selection
11Bilateral filtering
12Bilateral filtering
Denoise
Feature preserving
Normalization
13Bilateral filtering of meshes
14Bilateral filtering of meshes
15Bilateral filtering of meshes
- Height above surface is equivalent to the gray
level values in images
16Bilateral filtering of meshes
- Height above surface is equivalent to the gray
level values in images - Apply the bilateral filter to heights
17Bilateral filtering of meshes
- Height above surface is equivalent to the gray
level values in images - Apply the bilateral filter to heights
- Move the vertex to its new height
18Bilateral filtering of meshes
- Height above surface is equivalent to the gray
level values in images - Apply the bilateral filter to heights
- Move the vertex to its new height
- In practice
- Sharp features
19Bilateral filtering of meshes
- Height above surface is equivalent to the gray
level values in images - Apply the bilateral filter to heights
- Move the vertex to its new height
- In practice
- Sharp features
- The noise-freesurface is unknown
20Solution
- A plane that passes through the point is the
estimator to the smooth surface - Plane L(p,n)
21Solution
- A plane that passes through the point is the
estimator to the smooth surface - Plane L(p,n)
22Computing the plane
- The approximating plane should be
- A good approximation to the surface
- Preserve features
- Average of the normal to faces in the 1-ring
neighborhood
23DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
v
24DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
iterate over neighborhood
v
25DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
closeness
v
q
26DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
height similarity
v
q
27DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
v
weights
28DenoisePoint(Vertex v, Normal n) qi
neighborhood(v) Kqi sum0 normalizer0 fo
r i 1 to K t v-qi h
ltn,v-qigt Wcexp(-t2/(2sc2)) Wsexp(-h2/(2ss2))
Sum (wcws)h Normalizer
wcws End Return vn(sum/normalizer)
v
Move the vertex in the normal direction
29Parameters
- The two parameters to the weight function sc, ss
- Interactively select a point p and the
neighborhood radius ? - sc 1/2 ?
- ss stdv(Nbhd(p, ?))
- Number of Iterations
30Robustness
- Sharp features are treated as outliers
31Robustness
- Sharp features are treated as outliers
- The bilateral filter does not recover smoothed
signal
32Results
Bilateral mesh denoising
Anisotropic denoising of height fields - Desburn
00
Source
33Results
Anisotropic Geometric Diffusion in Surface
Processing - Clarenz 00
Bilateral mesh denoising
Source
34Results
Two iterations
Five iterations
Source
35(No Transcript)
36Future Work
- Adapt the algorithm to point sets
- Robust estimator of normals
37Acknowledgements
- Models and images courtesy of Jean-Yves Bouguet,
Mathieu Desbrun, Alexander Belyaev, Christian
Rossl from Max Planck Insitut fur Informatik, Udo
Diewald and Michael Elad - Israel Science Foundation funded by the Israel
Academy of Sciences and Humanities - Israeli Ministry of Science
- A grant from the German Israel Foundation (GIF).
38Input
Bilateral mesh denoising
Non-iterative, Feature Preserving Mesh smoothing
39Bilateral mesh denoising
Non-iterative, Feature Preserving Mesh smoothing
Source
40Bilateral mesh denoising
Non-iterative, Feature Preserving Mesh smoothing
41Comparison - predictors
Bilateral mesh denoising
Non-iterative, Feature Preserving Mesh smoothing
42New results
Bilateral mesh denoising
Extended Bilateral mesh denoising