Title: Analyse und Entscheidung im Marketing TeilnehmerInfo
1Analyse und Entscheidung im Marketing
Teilnehmer-Info
- Lernziele und Inhalte
- Stellung im Studium --- MgtSc Lab
- Course / Vorlesung
- individuelle Vorbereitung (Textbuch)
- Präsentationen und Diskussionen
- (PC-)Übungsbeispiele und Gruppenarbeit
- Leistungsbewertung
- 3/4 individuell (Quizzes), 1/4 Gruppenarbeit
- aktueller Punktestand im W W W
2Funktion der Folien
- Nur einige Folien dienen der Unterstützung von
Erklärungen des Course-Leiters. - Die meisten Folien liefern Stichworte zur
Vorbereitung der Reading Assignments (Was ist
wichtig?) und als roter Faden für die Diskussion
in den Veranstaltungen. - Die Studierenden erstellen ihre eigenen Slide
Shows für die Präsentationen von Gruppenarbeiten.
3Chapter 1 M. Engineering, Models
- Why marketing engineering?
- marketing models
- verbal, graphical, mathematical
- descriptive (predictive), normative, intuitive
- benefits decision options, relative impact of
variables, group decisions, subjective mental
models, opportunity costs, precision, analysis - Das macht mein Statistiker. ...
- (Der sitzt alsbald auf Ihrem Arbeitsplatz!)
4Chapter 2 Market Response Models
- Why market reponse models?
- inputs, response/output, objectives, black box
versus Struktur-, aggregiert, disaggregiert - Bausteine calibration
- simple phenomena P1 P8, stylized facts
- linear Polynom (power series) Potenz
(fractional root) halblogarithmisch
exponentiell modified exponential (Sättigungs-)
logistisch Gompertz - ADBUDG
5Chapter 2 Calibration
- objective subjective calibration
- Y a bX
- sales share a badvertising share
- R2 goodness-of-fit, Bestimmtheitsmaß
- decision calculus gt ADBUDG, judgmental data,
Lernen durch trial error
6Chapter 2 Objectives
- abhängige Vars, Zielinhalte
- fixed discretionary cost
- short-term, long-term profit
- uncertainty risk aversion
- certainty monetary equivalent Sicherheitsäquiv.
- risk premium Risikoprämieaverage gain-CME
- multiple goals konfliktäre Ziele?
- constraints Nebenbedingungen
7Chapter 2 Multiple Marketing-Mix Elements
- interactions
- full-linear Y a bX1 cX2 dX1X2
- multiplicative Y a X1b X2c
- dynamic effects
- carry-over, delayed response, customer-holdover
gt customer retention (decay, erosion) rate - sales in t a b advertising in t ? sales
in t-1 - sales in t-1 a b advertising in t-1 ?
- sales in t-2
8Chapter 2 Market Share, Competition
- Mengenumsatz Mengen-Marktanteil Marktvolumen
(Produktklassen-) - Wertumsatz, Feldanteil Käuferanteil
- Attraktionsmodell Mi Ai / (A1A2An)
- attraction total marketing effort
- Markt Produktklasse gt Marktvolumen,
Substitutionskonkurrenz und Marktanteil
9Chapter 2 Individual Customer Level
- scanner data, consumer panels, bar-code scanners
brand choice store and personal data - purchase probability Pij exp(Ai) / ? j exp(Aj)
- Aj ?k wkbijk
- multinomial logit model (MNL)
- proportional draw assumption
- gt nested logit model
10Chapter 2 Qualitative Models
- shared experience best practice, PIMS and
ADVISOR - rule-based representations, Expertensysteme,
Instrumente der AI - Modellwahl
- gt visual response modeling, Conglomerate Case
Excel Solver
11Chapter 5 Strategic Market Analysis I
- corporate strategy gt ...gt marketing objectives
- strategic / instrumental planning
- overcome limitations
- improper analytic focus, functional isolation,
ignoring synergy, short-run analysis, ignoring
competition, ignoring interactions, lack of an
integrated view, ...
12Chapter 5 Strategic Market Analysis II
- market demand trend analysis - forecasting
methods - judgmental, experts
- market product analysis demoskopische ...
- time-series analysis, univariate
- causal, multivariate
- which? when?
13Chapter 5 Strategic Market Analysis III
- The product life cycle concept
- which variable(s) to observe
- stages
- descriptive? predictive, a forecasting tool?
- consequences
- scale effects
- experience effects, the learning curve
- marketing consequences?
14Not in the textbook Discriminant analysis I
- Discriminant value for case i zi b0 b1 x1i
... bn xni - Mean of zi in group 1 Z1
- Mean of zi in group 2 Z2
- Std.dev. sZ1 und sZ2
- Optimization criterion
- (Z1 - Z2 )2
- _______________ ? Max!
- sZ12 sZ2 2
- _
15Not in the textbook Discriminant analysis II
- Separate the groups at Zkrit
- Z1 Z2
- Zkrit
- 2
- Zi lt Zkrit gt group 1
- Zi gt Zkrit gt group 2
16Not in the textbook Discriminant analysis III
- Test with the classification matrix
- (Vacation trip made during the past 12 months
yes/no) - forecasted behavior
- no yes
- no 1496 (66) 786 (34) 2282
- observed
- behavior yes 688 (30) 1622 (70) 2310
- --------------------------------------------------
------------------------ - 2184 2408 4592
- correct (14961622)/45.92 68
17Not in the textbook Discriminant analysis IV
- Compare with a random classification
- e.g. 30 travelers, 70 non-, p .30
- maximal chance criterion Cmax
- max(p, 1-p) .70
- proportional chance Cpro
- p2 (1-p)2 .58
18Chapter 6 Models for Strategic Marketing
Decision Making
- Market entry / exit decisions original vs.
reformulated products - a decision tree for problem structuring
- the PIMS project, ROI, ROS, PAR, LIM and other
mysteries - profit influences
19Chapter 3 Segmentation Targeting I
- m. segment, m. segmentation, target market
- segm. theory practice -- the STP approach
- segmentation criteria ...
- a priori versus a posteriori segmentation
- praktische Durchführung (Phasen 1-5)
- Beispiele benefit segmentation, PBMS
- Segmentierungsstrategien
20Ergänzung I zu Segmentation Targeting
21Ergänzung II zu Segmentation
- A-priori
- marketing objective defines the segments (e.g.
loyal customers) - search for correlates (crosstabulation,
AID/CHAID, DA, ...)
- A-posteriori
- heterogeneity hypothesis (e.g. regarding benefits
sought) - create the segments (cluster analysis,
neurocomputing) - search for correlates (same as in a-priori s.)
22Ergänzung III zu Segmentation Analytical tools
- A-priori
- contingency tables, crosstabs, mult- response
- Automatic Interaction Detector (AID/CHAID)
- discriminant analysis (DA)
- A-posteriori
- partitioning clustering (e.g. K-means)
- vector quantization (SOM, TRN/DTRN)
- testing with DA
- hierarchical clustering
23Ergänzung IV zu Segmentation Die neue
A-posteriori S. philosophy
- There are naturally predetermined segments.
- The marketing analyst should identify them.
- The manager should assess them in terms of
potential target groups.
- The marketing manager does not find segments, he
creates them. - Creating segments and customer types becomes a
means of competitive strategy.
24Ergänzung V zu Segmentation Neurocomputing-Meth
oden I
25Ergänzung VI Neurocomputing-Methoden II
Competitive (un)learning in the TRN
data point
prototype
26Chapter 4 Positioning I
Ease Comfort /
MyBrand
NewBrand
Scope, Functionality /
27Chapter 4 Positioning II
- perceptual maps extensions
Ease Comfort /
IdealPointSegment1
MyBrand
IdealPointSegment2
NewBrand
Scope, Functionality /
28Chapter 4 Positioning III
- perceptual maps more extensions
Ease Comfort /
IP1
IP2
Scope, Functionality /
29Chapter 4 Positioning IV
1 2 j m
30Chapter 4 Positioning V
challenging
adventure
o
o
exciting
o
o
31Chapter 7 NPD-New Product Decisions I
- core / tangible / augmented product
- stages in the NPD process
- NPD models
- identifying opportunities
- generating ideas
- evaluating ideas
- product design
- NP forecasting and testing
32Chapter 7 NPD-New Product Decisions II
- principles of conjoint analysis
- overall preference gt part-worths (utility
values) - product bundle of attributes not directly
evaluated - advantages ?
- limitations ?
- example
- levels nr of attributes combinations 34 x 4
324 - experimental design gt selected combinations
- part-worths gt ideal products
33Ergänzung I zu Conjoint-Analyse
Anwendungsbeispiel Euro pricing I
- capture consumer heterogeneity with
- explanatory variables and a random coefficient
model - Euro confidence and
- Euro scepticism (reversed scale)
- mitigate the negative effect of bothersome
conversion on the factors currency and price
34Ergänzung II zu Conjoint-AnalyseEuro pricing
II
35Chapter 9 Salesforce Channel Decisions I
- personal selling
- selective marketing effort, customized, people,
costs - functions performed by salespeople ...
- managing the salesforce
- organization own vs. commission-based
- sizing / allocation intuitive (welche ?) vs.
model-based procedures - control compensation schemes
36Chapter 9 Salesforce Channel Decisions II
- strategy direkt vs. indirekt
- location Filialen, Franchise-, Absatzmittler ...
macro micro (GIS-geoinformation systems) - logistics physical distribution, inventory
- gravity model
- pij Vij / ?N Vin , Vij S?j / D?in
- A (M1 M2) / D2
37Chapter 9 Salesforce Channel Decisions III
- gravity model ... steps (SCAN/US)
- geographic area gt zones
- data on competing stores
- store-zone distances
- calibration, sales potential gt shares
- locations for new store choice
- limitations IIA assumption, mode of access, ...
interactive marketing (online shopping)
38Chapter 10 Price Sales Promotion Decisions
- warum spielt Preis in allen Termen eine Rolle?
- profit (unit price unit cost) x quantity sold
- ? (?q/?p) (p/q), lt 1.0, gt 1.0 ?
- cross-price elasticities show ...
- TR pq gt ?TR/?q p q (?p/?q)
- Punkt-, Iso-Elastizitäten q a bp, q ap-b
- limitations ... Kundeninterpretation von
Preisänderungen ... (Beispiele)
39Chapter 10 Pricing in Practice
- cost-oriented
- Kritik, konstante Grenzkosten, konstante ?
- demand-oriented
- Kritik, value-in-use-Konzept
- reservation price, Preisbereitschaftsmessung
- konkurrenz-orientierte
- web economy auctions and bidding
- yield management
40Chapter 10 Price Discrimination
- heterogene, segmentierte Märket gt consumer
surplus - praktische Schwierigkeiten gt Preisdifferenzierung
sanlässe - Beispiele
- geographische Preisdifferenzierung
- grey markets, Euro-Einführung, online shopping
- zeitliche Preisdifferenzierung, Abschöpfungs-
41Chapter 10 Sales Promotions I
- temporary advertised price reductions
- Arten, Adressaten Komplementärwirkung
- communication incentive invitation
- typische Marketingziele ...
- (cross-)couponing, cross-merchandising,
- sampling, manufacturer price-off, premium offers,
in-store displays, feature adv., deals - Beispiele ...
42Chapter 10 Sales Promotions II
- Empfehlungen
- sales impact
- large share brands
- Abnutzung
- asymmetrische cross-promotion
- store traffic, Frequenzen
- Komplementär- und Substitutivprodukte
- Wirkungsmessprobleme
43Chapter 8 Advertising Communications Decisions
I
- communications mix
- advertising, PR, SP, PS, DM, HR
- Querverbindungen im Marketing Mix
- Entscheidungen innerhalb der Werbeplanung
- welche? Chart und Terminologie
- Interdependenzen
- Werbewirkungen
- response shape, dynamics, interaction
44Chapter 8 Advertising Communications Decisions
II
- Werbedosierung (frequency)
- Lern- und Vergessenskurven (decay)
- Wirkungsschwellen, Sättigung, Reaktanz
- Werbegestaltung (copy effects)
- Gestaltungselemente
- Wirkungsmaße (recognition, recall, ...)
- Pretesting, copy tests, Werbelabor
- psychotechnische Geräte ...
45Chapter 8 Advertising Communications Decisions
III
- advertising budget decisions
- Budgetierungsregeln
- all you can afford
- percentage of sales
- competitive parity
- objective and task
- model-based gt z.B. Adbudg Optimierung
46Chapter 8 Advertising Communications Decisions
IV
- Werbeträger-/Mediaplanung (media decisions)
- Kennzahlen Kontakttsumme (gross rating points),
(Netto-) Reichweite, mittl. Kontaktdosis,
impact - kombinierte kumulierte Reichweite
- 1000-Leser-, 1000-Kontakte-Preis
- Media-Analyse, Streuplanevaluierung,
Mediaoptimierungsmodelle - Botschaftsplanung gt Stufenmodell
47Chapter 8 Advertising Communications Decisions
V
- creative quality, Werbemittelanalyse
- Starch-Maße noted, seen-associated, read- most
- Werbetextanalyse
- advertising design
- Expertensysteme (ADCAD) Regelbasis,
Inferenzmaschine limitations - Briefing für Kreative Punktation