Title: Fuel Cells: Powering Progress in the 21st Century
1Fuel Cells Powering Progress in the 21st Century
- Sossina M. HaileMaterials Science
2Outline
- What is a fuel cell
- Technology Status
- H2/air fuel cell
- H2 storage
- On-board H2 generation
- Direct Methanol
- Enabling Advances
Daimler-Chrysler Necar 4, 1998 50 kW fuel cell,
400 km range
3Principle of Operation
- Major Components
- anode fuel oxidation
- cathode oxidant reduction
- electrolyte ion transport
- Example
- H2 ? 2H 2e-
- ½O2 2H 2e- ? H2O
4Fuel Cell Performance
- H2 ½ O2 ? H2O
- DGo(90C) -226.1 kJ/mole
- Eo DGo/nF 1.17 V ? OCV
- voltage losses
- fuel cross-over
- reaction kinetics
- electrolyte resistance
- mass flow limitations
- power IV
- peak efficiency at low I
- peak power at mid I
5Why Fuel Cells?
U.S. CO2 emissions by sector source DOE
atmospheric CO2 1800 280 ppm 2000 350 ppm 2030
560 ppm
- higher fuel efficiency required to reduce CO2
emissions
6Energy Efficiency
- high efficiency
- size independent
- low power applications
- automotive
- electronics
- remote stationary
- remote residential
- power industry deregulation
7Why Fuel Cells?
Federal and California Emissions Standards
- fuel cells
- easily
- meet new
- ZEV goals
8Fuel Cell Types
By-products H2O, CO2
9Mobile Applications
- close to ambient temperature operation
- polymer electrolyte
- alkali electrolyte
- phosphoric acid electrolyte
- avoid corrosive liquids
- polymer electrolyte (Nafion)
- fuel choices
- H2 ? H2/O2 fuel cell
- CH3OH ? Direct Methanol Fuel Cell
10Proton Conducting Polymers
- Nafion (Dupont)
- teflon-like backbone
- (CF2)n ? chemical stability
- sulfonic acid groups
- (CFO CF2)nSO3- ? high conductivity
- saturate with H2O
- inverse micelle structure
- maintain high humidity during operation
1 nm
11PEM H2/O2 Fuel Cell
- Membrane
- keeps gases separate
- transports H
- Pt catalyst (0.2 mg/cm2)
- ½ H2 ? H 2e-
- ½ O2 2H 2e- ? H2O
- Contacts gas electrolyte
- Porous graphite
- transports e-
- permeable to gases
12PEM H2/O2 Fuel Cell Stack
- Single cell 0.6V, 0.8 A/cm2
- 50-75 kW for automobile
- multiple cells for ? power
- connect in series V nVo
- connect in parallel I nIo
13PEM Fuel Cell Systems
- Hydrogen source
- Stored on-board
- Delivery system
- Generated on-board
- Public acceptance
- Sensitive MEA
- Water management
- Thermal management
- Catalyst poisoning
14Hydrogen as a Fuel
- Safety
- H2 generation
- reformation of natural gas
- controlled CO2 production
- electrolysis of H2O
- H2 delivery
- tanks
- pipelines
- compressors
- Energy density
- Fuel Wh/g kWh/L
- Hydrogen 33 ???
- Diesel Fuel 13.2 21.1
- Gasoline 8.4 12.6
- Methanol 6.2 5.0
- Energy requirements
- 350 mile range
- gas 20 mpg ? 18 gal (60L)
- H2 0.6 m/kWh ? 18kg (40 lbs)
15On-Board Hydrogen Storage
? fuel efficiency 4-5? 18 ? 3.6kg
today 1.7 wt gt 1060 kg (2,300 lbs) target 12
wt gt 150 kg (330 lbs)
16On-board Reformers
Methanol Methane (NG) CnHm
(gasoline)
CH3OH H2O ? CO2 3H2 endothermic
250C, Cu-Zn catalyst
CH4 H2O ? CO 3H2 endothermic
900C, Ni catalyst
CnHm n/2O2 ? nCO
m/2H2 exothermic 1200C, flame
0.5 2 CO
Syngas
Syngas hydrocarbons
CO clean-up
CO H2O ? CO2 H2 exothermic (1)
350C, Ni catalyst (2) 200C, Cu-Zn catalyst
0.5 2 CO
? 20 ppm CO
PEM fuel cell
17Fuel Cell Catalysts
CO sensitivity
- Quantity of Pt required
- operate at 1 A/cm2, 0.65V
- ? 0.65 W/cm2
- require 50-75kW power
- ? 105 cm2
- Pt loading of 0.2mg/cm2
- ? 20g Pt / vehicle
S. Gottesfeld, LANL
18Fuel Cell Realities
- Fuel Cell System
- Complex!!