Title: Vikas Berry
1BioNanoTechnology Integrating Nano-Materials
with Biological Systems
Vikas Berry
2- Biology
- Chemistry Complementary parts
- Complex systems (energy, signaling)
- Unique molecular level devices
- Unique Molecules and textures
- Nanotechnology
- Single electron effects
- Nanogap conduction
- Nanofluidics, nano-heat-conduction
- Unique Optical properties
3Bio-nanotechnology
Interfacing nanotechnology and biological systems
Electronics/ Optics
Biosensors
Complex Systems
DNA micro-array
Biophysics
Sensors
Nano-Machines
Memory devices
Bio-detector
B-MEMS/B-NEMS
Protein Chips
Hybrids
4Bacteria Nanoparticle B-NEMS Device
SiO2
V. Berry, and R. F. Saraf, Angewandte Chemie, 44,
6668-6673, 2005 (Hot Paper) Featured in Nature,
Science News V. Berry, S. Rangaswamy, and R. F.
Saraf, Nanoletters, 4, 939-942, 2004
5Nanorods on Bacteria
V. Berry, A. Gole, S. Kundu, C. Murphy, and R. F.
Saraf, Journal of the American Chemical Society,
127, 17600-17601, 2005
6Bacterium Surface
18-35 nm
Cell wall Structure of Gram positive bacterium
7Deposition Process
Au nanoparticles (30 nm) coated with Poly L-lysine
Bacteria (B. cereus)
Poly L-Lysine
Si Substrate
SiO2 (1 µm)
Au Electrodes (200 nm)
Si Substrate
Only bacteria between the electrodes are shown
Au nanoparticle coated bacteria
8Deposition Density
Nanoparticle Deposition Times 0.5, 1, 2, 4, 8
hrs (f) deposition on physical substrate for 16
hrs. Bar 300 nm
9How to achieve Percolation?? SAMs Vs. PE-Fingers
10Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
11Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
12Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
13Perspective
Bacteria is a Micro-Mechanical System
Teichoic acid -------------------------------
Peptidoglycan
14Humidity Sensor B-NEMS
15Poly-L-Lysine capping w/ glutraldehyde no
change in performance
16How does this work?
17I-V Measurements
Room Humidity 42
Slight Curvature Coulomb Blockade
18Cryogenic I-V Measurements
19Electron Tunneling Quantum Mechanical Effect
20Electron Tunneling
Metal Electrode B
Metal Electrode A
e
E
Electron energy E
Barrier Height f
e
Barrier Width a lt 5 nm
21Electron Transport
Electron Tunneling Fowler Nordheim Equation
Electron energy E
Barrier Height f
e
Barrier Width a
22(No Transcript)
23(No Transcript)
24How does this system work as a Memory Device?
25Image Charge Attraction Device
26I-V Measurements
27Positioning the Bacterium
28Electrophoretic trapping of Bacteria
V. Berry, and R. F. Saraf, Angewandte Chemie, 44,
6668-6673, 2005 (Hot Paper) Featured in Nature,
Science News, MRS Bulletin
29Multiple bridges formed in 2 mins.
Electric Field 10 KV/cm or 1 V/mm (10
kHz) Distance between the tips of electrode 10 m
30Bacteria Dead or Alive?
31Fate of Bacteria
- Confocal microscopy (standard PI/SYTO 9 assay )
-
- Live Bacteria
- Gold Nanoparticle Deposited for 4 hrs.
- In 10-5 torrs Vacuum for 2 hrs.
- - alive
- - dead
32Threatened bacteria
No DI water exposure
1 h DI water exposure
2 h DI water exposure
3 h DI water exposure
Bacteria is alive
33Nanorods on Bacteria
34Nanorods (25nm X 400nm) on Bacteria
35 Nanorod Nanospheres
13.5 coverage
41 coverage
15 min deposition
36On physical surface Non-percolating
4 orders of magnitude
37Bending of Nanorods
Electrostatic force of bacteria on nanorods gt 30
X 106 N/m2
38Conclusion
- Bionanotechnology Electron Tunneling device
integrated with Bacteria - Biology an active part of device
- Most sensitive and the fastest humidity sensor
- Bacteria a very high electrostatic-force system
- WORM memory device
39Bio-nanotechnology
Interfacing physical and biological systems
SiO2
10 mm
Electrodes
Fiber
40SiO2
Polyelectrolyte-Fiber Nanoparticle Hybrid
10 mm
412 m fiber
1 m
42DNA Nano-Machines
43Nano-Valve
Gold Electrode
Thiol Terminated DNA
Nano-Channel
E 0
Reservoir
E gt 0
Silica
Silane Terminated DNA
Silicon
OPEN
CLOSE
I
44OPEN
Ionic Current across channel (I)
Threshold Voltage (DNA dehybridization)
CLOSE
Voltage across DNA valve (V)
45(No Transcript)
46Molecular Actuated Nano-junction
47hn
D
48Azo Polyelectrolyte-Metal Particle Hybrid
Photo-isomerization State 1 Expands to
trans State 2 Contracts to cis
Electron Tunneling
e-
e-
e-
Bonded Polyelectrolyte
Silica
I
Gold Electrode
49hn
hn
Current (I)
hn
hn
Voltage V
Time (s)
50(No Transcript)
51DiSSA Directed and Shielded Self Assembly
52a.
Bonded Polyelectrolyte Layer (30 nm)
Polyelectrolyte Monolayer (0.2-0.5 nm)
b.
53(No Transcript)
54Concept of the Electron-Tunneling Sensor
INPUT - Laser
Azo Polymer Storing Media
hn
hn
Photo-isomerization State 1 Expands to
trans State 2 Contracts to cis
MECHANISM Electron Tunneling
e-
e-
e-
Bonded Polyelectrolyte
Percolating Deposition of Nanoparticles (Au, 20
nm)
I
Gold Electrode
Silica
OUTPUT Current (2 states)
55INPUT Gas A
Polymer A
Polymer Swells in the Presence of Gas A.
e-
OUTPUT - Current
I
56Flexible Conductor
57w
Po P(w)
Io I(w)
I(w)
58Nano-Diode Fabrication
59Step 1. Diode Device Plan
- CdS
- Au
a.
b.
c.
- Annealing process,
- Annealed device with metal-semiconductor Schottky
diodes, separated by tunnel junctions - Equivalent circuit
60How the diode will look
61Bacterial Battery
62Biology Integration
Bacteria w/ nanoparticles
Electrode attached to the bacteria
1.
2.
Bio-component
Nanodevice
63Biological Battery Cell
Electrodes
Live Microorganism
(-)
()
Silica Chip
Diode Device
Nutrient Solution for Bacteria
e-
Insulating Chamber
64Biological Battery Cell
Electrodes
Live Microorganism
(-)
()
Nanoparticle based Diode Device
Silica Chip
e-
Nutrient Solution for Bacteria
Insulating Chamber
65Molecular-Junction Photon-Detector
66Step 2 - Photon Detector
Reactive Red
a
Au nanoparticle
Electron Tunneling through dye
e-
Electric field
67Hn (green laser)
Reactive Red layer
e-
e-
Electric Field
Higher Tunneling Barrier
hn
Low Tunneling Barrier
e-
e-
Model for light sensor
68Nanoparticle-Based A.F.M.
69Non-Laser AFM
AFM cantilever
Side View
Electrodes
Top View
A
Piezo-electric stage
Fiber with nanoparticles
70Lithography Process
Groves made by photolithography
Silica
Polyelectrolyte
ICP etching (CF4/O2 plasma )
Polyelectrolyte
Silica
Nanoparticle deposition
Nanoparticle on Polyelectrolyte fiber
Silica