Vikas Berry - PowerPoint PPT Presentation

1 / 70
About This Presentation
Title:

Vikas Berry

Description:

Vikas Berry – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 71
Provided by: vik894
Learn more at: http://www.phys.ksu.edu
Category:
Tags: berry | vikas | zug

less

Transcript and Presenter's Notes

Title: Vikas Berry


1
BioNanoTechnology Integrating Nano-Materials
with Biological Systems
Vikas Berry
2
  • Biology
  • Chemistry Complementary parts
  • Complex systems (energy, signaling)
  • Unique molecular level devices
  • Unique Molecules and textures
  • Nanotechnology
  • Single electron effects
  • Nanogap conduction
  • Nanofluidics, nano-heat-conduction
  • Unique Optical properties

3
Bio-nanotechnology
Interfacing nanotechnology and biological systems
Electronics/ Optics
Biosensors
Complex Systems
DNA micro-array
Biophysics
Sensors
Nano-Machines
Memory devices
Bio-detector
B-MEMS/B-NEMS
Protein Chips
Hybrids
4
Bacteria Nanoparticle B-NEMS Device
SiO2
V. Berry, and R. F. Saraf, Angewandte Chemie, 44,
6668-6673, 2005 (Hot Paper) Featured in Nature,
Science News V. Berry, S. Rangaswamy, and R. F.
Saraf, Nanoletters, 4, 939-942, 2004
5
Nanorods on Bacteria
V. Berry, A. Gole, S. Kundu, C. Murphy, and R. F.
Saraf, Journal of the American Chemical Society,
127, 17600-17601, 2005
6
Bacterium Surface
18-35 nm
Cell wall Structure of Gram positive bacterium
7
Deposition Process
Au nanoparticles (30 nm) coated with Poly L-lysine
Bacteria (B. cereus)
Poly L-Lysine
Si Substrate
SiO2 (1 µm)
Au Electrodes (200 nm)
Si Substrate
Only bacteria between the electrodes are shown
Au nanoparticle coated bacteria
8
Deposition Density
Nanoparticle Deposition Times 0.5, 1, 2, 4, 8
hrs (f) deposition on physical substrate for 16
hrs. Bar 300 nm
9
How to achieve Percolation?? SAMs Vs. PE-Fingers
10
Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
11
Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
12
Nanoparticle Deposition Cartoon
Negative Charge
SAMs
Polyelectrolyte (Positively charged)
Fingers
13
Perspective
Bacteria is a Micro-Mechanical System
Teichoic acid -------------------------------
Peptidoglycan
14
Humidity Sensor B-NEMS
15
Poly-L-Lysine capping w/ glutraldehyde no
change in performance
16
How does this work?
17
I-V Measurements
Room Humidity 42
Slight Curvature Coulomb Blockade
18
Cryogenic I-V Measurements
19
Electron Tunneling Quantum Mechanical Effect
20
Electron Tunneling
Metal Electrode B
Metal Electrode A
e
E
Electron energy E
Barrier Height f
e
Barrier Width a lt 5 nm
21
Electron Transport
Electron Tunneling Fowler Nordheim Equation
Electron energy E
Barrier Height f
e
Barrier Width a
22
(No Transcript)
23
(No Transcript)
24
How does this system work as a Memory Device?
25
Image Charge Attraction Device
26
I-V Measurements
27
Positioning the Bacterium
28
Electrophoretic trapping of Bacteria
V. Berry, and R. F. Saraf, Angewandte Chemie, 44,
6668-6673, 2005 (Hot Paper) Featured in Nature,
Science News, MRS Bulletin
29
Multiple bridges formed in 2 mins.
Electric Field 10 KV/cm or 1 V/mm (10
kHz) Distance between the tips of electrode 10 m
30
Bacteria Dead or Alive?
31
Fate of Bacteria
  • Confocal microscopy (standard PI/SYTO 9 assay )
  • Live Bacteria
  • Gold Nanoparticle Deposited for 4 hrs.
  • In 10-5 torrs Vacuum for 2 hrs.
  • - alive
  • - dead

32
Threatened bacteria
No DI water exposure
1 h DI water exposure
2 h DI water exposure
3 h DI water exposure
Bacteria is alive
33
Nanorods on Bacteria
34
Nanorods (25nm X 400nm) on Bacteria
35
Nanorod Nanospheres
13.5 coverage
41 coverage
15 min deposition
36
On physical surface Non-percolating
4 orders of magnitude
37
Bending of Nanorods
Electrostatic force of bacteria on nanorods gt 30
X 106 N/m2
38
Conclusion
  • Bionanotechnology Electron Tunneling device
    integrated with Bacteria
  • Biology an active part of device
  • Most sensitive and the fastest humidity sensor
  • Bacteria a very high electrostatic-force system
  • WORM memory device

39
Bio-nanotechnology
Interfacing physical and biological systems
SiO2
10 mm
Electrodes
Fiber
40
SiO2
Polyelectrolyte-Fiber Nanoparticle Hybrid
10 mm
41
2 m fiber
1 m
42
DNA Nano-Machines
43
Nano-Valve
Gold Electrode
Thiol Terminated DNA
Nano-Channel
E 0
Reservoir
E gt 0
Silica
Silane Terminated DNA
Silicon
OPEN
CLOSE
I
44
OPEN
Ionic Current across channel (I)
Threshold Voltage (DNA dehybridization)
CLOSE
Voltage across DNA valve (V)
45
(No Transcript)
46
Molecular Actuated Nano-junction
47
hn
D
48
Azo Polyelectrolyte-Metal Particle Hybrid
Photo-isomerization State 1 Expands to
trans State 2 Contracts to cis
Electron Tunneling
e-
e-
e-
Bonded Polyelectrolyte
Silica
I
Gold Electrode
49
hn
hn
Current (I)
hn
hn
Voltage V
Time (s)
50
(No Transcript)
51
DiSSA Directed and Shielded Self Assembly
52
a.
Bonded Polyelectrolyte Layer (30 nm)
Polyelectrolyte Monolayer (0.2-0.5 nm)
b.
53
(No Transcript)
54
Concept of the Electron-Tunneling Sensor
INPUT - Laser
Azo Polymer Storing Media
hn
hn
Photo-isomerization State 1 Expands to
trans State 2 Contracts to cis
MECHANISM Electron Tunneling
e-
e-
e-
Bonded Polyelectrolyte
Percolating Deposition of Nanoparticles (Au, 20
nm)
I
Gold Electrode
Silica
OUTPUT Current (2 states)
55
INPUT Gas A
Polymer A
Polymer Swells in the Presence of Gas A.
e-
OUTPUT - Current
I
56
Flexible Conductor
57
w
Po P(w)
Io I(w)
I(w)
58
Nano-Diode Fabrication
59
Step 1. Diode Device Plan
- CdS
- Au
a.

b.
c.
  • Annealing process,
  • Annealed device with metal-semiconductor Schottky
    diodes, separated by tunnel junctions
  • Equivalent circuit

60
How the diode will look
61
Bacterial Battery
62
Biology Integration
Bacteria w/ nanoparticles
Electrode attached to the bacteria
1.
2.
Bio-component
Nanodevice
63
Biological Battery Cell
Electrodes
Live Microorganism
(-)
()
Silica Chip
Diode Device
Nutrient Solution for Bacteria
e-
Insulating Chamber
64
Biological Battery Cell
Electrodes
Live Microorganism
(-)
()
Nanoparticle based Diode Device
Silica Chip
e-
Nutrient Solution for Bacteria
Insulating Chamber
65
Molecular-Junction Photon-Detector
66
Step 2 - Photon Detector
Reactive Red
a
Au nanoparticle
Electron Tunneling through dye
e-
Electric field
67
Hn (green laser)
Reactive Red layer
e-
e-
Electric Field
Higher Tunneling Barrier
hn
Low Tunneling Barrier
e-
e-
Model for light sensor
68
Nanoparticle-Based A.F.M.
69
Non-Laser AFM
AFM cantilever
Side View
Electrodes
Top View
A
Piezo-electric stage
Fiber with nanoparticles
70
Lithography Process
Groves made by photolithography
Silica
Polyelectrolyte
ICP etching (CF4/O2 plasma )
Polyelectrolyte
Silica
Nanoparticle deposition
Nanoparticle on Polyelectrolyte fiber
Silica
Write a Comment
User Comments (0)
About PowerShow.com