Massive Objects at the Centers of Galaxies - PowerPoint PPT Presentation

About This Presentation
Title:

Massive Objects at the Centers of Galaxies

Description:

1961-2 Hoyle, Fowler - radio sources are powered by ... 1964 Zel'dovich & Novikov, Salpeter et al - black holes. 1965 Dent - variability. More history ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 23
Provided by: roger200
Learn more at: http://www.aoc.nrao.edu
Category:

less

Transcript and Presenter's Notes

Title: Massive Objects at the Centers of Galaxies


1
Massive Objects at the Centers of Galaxies
  • Roger Blandford
  • KIPAC
  • Stanford

2
An History
  • 1961-2 Hoyle, Fowler - radio sources are powered
    by explosions involving superstars
  • 1963 Hazard, Schmidt - quasars
  • 1963 Kerr metric
  • 1964 Zeldovich Novikov, Salpeter et al - black
    holes
  • 1965 Dent - variability

3
More history
  • 1966 Rees - superluminal expansion
  • 1968 Wheeler - Black Hole
  • 1969 - Whitney.. - SLE measured
  • 1969 Lynden-Bell - dead quasars, disks
  • 1974 Balick Brown, Lynden Bell Rees
  • 1975 Kellermann Cygnus A - pc scale collimation
    gt black hole

4
Observational Evidence
  • Accretion disks
  • NGC 4258 masers gt Keplerian
  • Molecular disks
  • Stellar Orbits
  • Velocity dispersion and rotation
  • Individual, disruption?
  • X-rays from inner disks
  • MCG 6-30-15 Fe gtmaximal rotation?
  • Comptonized, synchrotron, inverse Compton
  • Variability
  • Blazar jets
  • Disks?
  • Winds
  • BALQ
  • ?

5
(No Transcript)
6
Black Holes
  • Kerr Metric (not Kerr-Newman)
  • Mass mM8AU500M8s5Gm17s
  • Spin W a / 2mr
  • Ergosphere
  • Reducible mass
  • Shrink smallest stable circular orbit
  • GR untested
  • Black hole is strongly curved space(time) outside
    horizon - not just the horizon
  • Use infalling coordinate systems not just
    Boyer-Lindquist

7
Spin energy of a black hole
Irreducible Radius Irreducible Mass
Specific Angular Momentum
Rotational Speed
Gravitational mass
8
Kerr Spacetime
  • Dragging of inertial frames
  • Physics of ergosphere very important
  • Need numerical simulation - MHD
  • Thin disk efficiency probably irrelevant to real
    disks binding energy curve very shallow
  • Accretion Gap
  • Proper distance between horizon and marginally
    stable orbit 7m - 2m as a -gt m

9
Modes of Accretion and Sgr A
  • LE 1046M8 erg s-1 3 x 1044 erg s-1
  • ME 1025M8 g s-13 x 1023 g s-1
  • Mass supply
  • M lt 0.1 ME Thick, ion-supported disks 1021
    g s-1
  • Mass accretion ltlt Mass supply 1018g s-1
  • 0.1 ME lt M lt 10 ME Thin, radiative disks
  • 10ME lt M Thick, radiation-dominated disks

10
Luminosity vs Supply Rate
Brightest quasars
0
-2
L / LE
-4
-6
Sgr A
-8
-4
-2
0
2
MS / ME
11
Ion-Supported Thick Disks
  • Low mass supply and efficient angular momentum
    transport, low radiative efficiency
  • Adiabatic/altruistic/demand-limited accretion
    (ADIOS)
  • Most mass escapes in a wind carrying off the
    energy liberated by the accreting gas
  • Wind may be matter-dominated or
    magnetically-dominated 1039 erg s-1

Transition radius
12
Self-similar disk models
  • Gas dynamical model
  • Convective Disk
  • Gyrentropic structure
  • S(L), B(L)
  • Meridional circulation
  • Thermal Front
  • Mass, momentum,
  • energy conserved
  • Outflow carries off energy
  • Centrifugal funnel

13
Relativistic Ion-supported Torus
  • Gyrentropic - S(L)
  • Asymptotes to self-similar non-relativistic disk
  • Similar discussion for transition to thin disk

14
Magnetic Field
  • Magnetorotational Instability
  • Disk-Hole Connection
  • Magnetized Outflows
  • Extraction from Hole

BMW
15
Emission from Ion Torus
  • Trans-sonic, Alfvenic, relativistic
    differentially-rotating flow
  • gtparticle acceleration easy!
  • gtNonthermal emission
  • X-rays not thermal bremsstrahlung
  • cm emission from outer disk (jet?)
  • Radio/mm polarization

16
Jets and Radio Sources
  • Energy ( mass, angular momentum) exhausts
  • Fluid
  • Ions
  • Hydromagnetic
  • Relativistic MHD / Electromagnetic
  • Disordered
  • Ordered
  • Jets highlight the current flow
  • Sgr A jet ?
  • Evolution of mass, momentum, energy along jet
  • Entrainment, dissipation and radiation

17
3-D, adiabatic MHD model
DENSITY
PRESSURE
p, ? Contours similar BARYTROPIC
Rotation on cylinders Von Zeipel
(azimuthally averaged)
Hawley, Balbus Stone 01
18
3-D, adiabatic MHD model
n108cm-3 P 1 Pa
NRMHD wind plus RMHD/EM jet Centrifugal force
important
Hawley Balbus 02
19
Pictor A
Sgr A Jet? B100G, F3PV I300TA LEM1030W
Magnetically-pinched current? Magnetic
reservoir Ohmic dissipation W . B constant
20
Ultrarelativistic Jets
  • Powerful compact radio sources
  • Superluminal jets V 0.99 c
  • Variable GeVg-ray source
  • eg 3C 279 - Lg 1049 f erg/s gtgt Lrad
  • MKN 421 - 30 min variability at 1 TeV!
  • Intraday variability gt V 0.999(9) c
  • Refractive scintillation
  • Coherent emission?
  • Gyrocyclotron by mildly relativistic electrons?
  • Sgr Amay be a TeV source

21
Why is Sgr A interesting?
  • Very dark energy!
  • Why is the sun interesting?
  • Extreme accretion mode
  • Quantitative?!
  • Stellar dynamics
  • Cradle to grave
  • Things unseen
  • Complexity
  • Molecular gas, orientation, IRS13, SNR, magnetic
    environment..
  • Black holes - strong field test of GR
  • (Sub)mmVLBI for black hole shadow
  • Periodicities?

22
Summary
  • Sgr A paradigm for slow accretion
  • Detailed MHz - TeV observation
  • Possibly best (and cheapest) laboratory for
    strong field GR
  • Radio astronomers have produced almost all the
    good, quantitative affirmations of weak field
    relativity. Why stop now?
  • Complexity of circum-nuclear gas flow, stellar
    dynamics
Write a Comment
User Comments (0)
About PowerShow.com