Lisbon, 1721 July 2006 - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Lisbon, 1721 July 2006

Description:

Solaro, Salini, Ferrari Robustness and Multilevel Models. Lisbon, 17-21 July 2006 ... Ferrari P.A., Solaro N. (2002), 'Una proposta per le componenti erratiche del ... – PowerPoint PPT presentation

Number of Views:154
Avg rating:3.0/5.0
Slides: 30
Provided by: silvia2
Category:
Tags: ferrari | july | lisbon

less

Transcript and Presenter's Notes

Title: Lisbon, 1721 July 2006


1
Robustness and Multilevel Models
Silvia Salini, Pier Alda Ferrari Department of
Economics, Business and Statistics University of
Milan silvia.salini_at_unimi.it pieralda.ferrari_at_unim
i.it
Nadia Solaro Department of Statistics University
of Milan - Bicocca nadia.solaro_at_unimib.it
  • Lisbon, 17-21 July 2006

2
Outline
  • Introduction to Linear Multilevel Models
  • Robustness in multilevel models
  • Multilevel models for robustness Statistical
    Calibration
  • Robustness issues in statistical calibration
  • Multilevel Calibration Estimator
  • Simulation Study
  • Group Diagnostics
  • Application Concrete Blocks data
  • Conclusion

3
Introduction (1)
  • Multilevel models a modelling approach for the
    analysis of data organized in hierarchical
    structures, or more generally, in multilevel
    structures
  • (Goldstein (1995), Snijders and Bosker (1999))
  • Parameter estimation procedures account for
    correlated data within groups
  • Between-groups variance parameters involved in
    these models

4
Introduction (2)
  • Connection robustness and multilevel models
    according to a dual direction of analysis
  • 1. Robustness in multilevel models
  • In the current acceptation Robustness with the
    sense of Resistance to the presence of either
    outliers or misspecifications of model error
    distributions
  • Are maximum likelihood estimators for model
    parameters sensitive to misspecifications of
    random-effects distributions?

5
Introduction (3)
  • Connection robustness and multilevel models
    according to a dual direction of analysis
  • 2. Multilevel models for robustness
  • Multilevel modelling referred to as a robust
    methodology when data are grouped
  • In the statistical calibration framework does the
    multilevel model methodology offer a valid tool
    when data are grouped and the classical estimator
    fails the expected performance?

6
Linear multilevel models for two-level nesting
structures
  • Model formulation
  • nj units within group (level-1 units)
  • J groups (level-2 units)
  • Laird and Wares matrix formulation
    (Biometrics,1982)

Assumptions
7
Parameter Estimation
Unknown parameters fixed effects (?), level-one
and level-two variance components (?2 and ?hm)
  • Main estimation methods
  • Extension of Generalized Least Squares
  • IGLS/RIGLS (Goldstein, 1995)
  • Maximum likelihood approach ML/REML
  • (e.g. Pinheiro and Bates, 2000)
  • Gaussian Multilevel Model

8
1. Robustness in multilevel models
  • In a series of papers Solaro and Ferrari deal
    with the problem of maximum likelihood estimator
    performance when the random-effects distribution
    is misspecified
  • The considered misspecifications concern kurtosis
    departures, which are described by the family of
    Multivariate Exponential Power distributions
  • The main problems arise in the estimation of the
    standard errors of level-2 variance component
    estimators
  • Solaro and Ferrari, Stat. Meth. Applic., 2006
  • Solaro and Ferrari, in Zani S., Cerioli A.,
    Riani M., Vichi M. (eds.), Data Analysis,
    Classification and Forward Search. Springer,
    Berlin (in press)

9
2. Multilevel models for robustnessStatistical
Calibration
Calibration experiment
X(X1, X2,.Xp) standard method
Y1(Y11, Y12,.Y1q) test method
Prediction experiment
Y2(Y21, Y22,.Y2q)
?
10
Statistical Calibration
p q
MLE Classical Estimator
Classical Estimator is asymptotically correct,
some problems occurs in determining confidence
regions (Zappa and Salini, 2005)
11
Robustness issues in statistical calibration
  • Robust regression methods
  • (Cheng and Van Ness, 1997)
  • Classic estimators on data with the outliers
    rejected
  • (Walczak, 1995)
  • Forward Search in Multivariate Calibration
  • (Riani and Salini, 2005 Salini 2006)

12
Forward Search in Multivariate Calibration
(Salini, 2006)
  • Data 1 there are not outliers but only groups,
    robust and classical estimators perform in the
    same way
  • Data 2 outliers are present, robust estimators
    fit better than the classical one

.
13
Random parameters in statistical calibration
models
  • Calibration with Randomly Changing Standard
    Curves (Vecchia and Chapman, 1989)
  • Calibration with Random slopes (Oman, 1998)
  • Prediction and inverse estimation in
    repeated-measures models (Liski and Nummi, 1995)
  • Likelihood Methods for Controlled Calibration
    (Bellio, 2003)

14
Multilevel Calibration Estimator
  • Three different approaches (pq1)
  • Unique calibration model (ignoring the grouping
    structure)
  • Within-Group calibration estimator

15
Predictions for values of Uj are given
by (BLUPs of the uj)
Multilevel Calibration Estimator
  • Multilevel Calibration model
  • Random intercept
  • - calibr. step
  • - pred. step
  • Random intercept and random slope
  • - calibr. step
  • - pred. step

16
Simulation Study
17
Application Concrete Blocks data
  • Building Industry
  • The experiment is performed in order to determine
    the strength of concrete blocks
  • standard method destructive, test method
    sclerometer
  • N 1200, J 24
  • Groups differs by concentration of cement,
    temperature,
  • number of days from building
  • training set (80 of data), test set (20 of
    data)

18
Application Concrete Blocks data
19
Concrete Blocks data Forward Search Group
diagnostics Forward Bivariate Ellipsoid Plot
20
Concrete Blocks data Multilevel model Level-2
residual diagnostics
Standardized level-2 residuals by Normal scores
(random intercept model), REML method
Likelihood ratio test ? 381.457, p 0.001
21
Concrete Blocks data Multilevel model Level-2
residual diagnostics
95 -Confidence Intervals (random intercept
model), REML method
22
Concrete Blocks data Multilevel model Level-2
residuals pairwise comparisons
95-Comparative Confidence Intervals (random
intercept model), REML method
23
Application Concrete Blocks data
MSE in the test set. Runs consist in different
split of training and test set
24
Conclusion and Prospects
  • Group diagnostics in case of Normal Mixture by
    using Random Forward Search approach (Riani et
    al., 2006)
  • Developing the Multilevel model diagnostic tools
    for the prediction step
  • Extension to more complex multilevel models of
    the calibration methodology, especially in the
    multivariate calibration framework
  • Integrating the Forward Search and the multilevel
    model diagnostic tools to recognize grouping
    structures in data when there arent natural
    groups or when some of them are redundant

25
References (1)
  • Atkinson A.C., Riani M. (2000), Robust Diagnostic
    Regression Analysis, Springer-Verlag, New York
  • Atkinson A.C., Riani M., Cerioli A. (2004),
    Exploring Multivariate Data with the Forward
    Search, Springer-Verlag, New York
  • Brown P.J., Sundberg R. (1989), Prediction
    diagnostic and updating in multivariate
    calibration, Biometrika, 72, pp. 349-361
  • Brown P.J. (1982), Multivariate Calibration,
    JRSS, Series B, 44, pp. 287-321
  • Brown P.J. (1993), Measurement, Regression and
    Calibration, Clarendon Press, Oxford
  • Cheng C.L., Van Ness J.W. (1997), Robust
    calibration, Technometrics, 39, pp. 401-411
  • Fang K.-T., Kotz S., Ng K.W. (1990), Symmetric
    Multivariate and Related Distributions,
    Monographs on Statistics and Applied Probability,
    36, Chapman and Hall, New York

26
References (2)
  • Ferrari P.A., Solaro N. (2002), Una proposta per
    le componenti erratiche del modello
    multilivello. In Studi in onore di Angelo
    Zanella, a cura di B.V. Frosini, U. Magagnoli,
    G. Boari, VP Università, Milano, pp. 273 291
  • Goldstein H. (1995), Multilevel Statistical
    Models, 2nd edition, Kendalls Library of
    Statistics, 3, Arnold Ed., London
  • Gómez E., Gómez-Villegas M.A., Marín J.M. (1998),
    A multivariate generalization of the power
    exponential family of distributions, Comm. Stat.
    Theory and Methods, 27, 3, pp. 589-600
  • Hampel F.R, Ronchetti E.M., Rousseeuw P.J.,
    Stahel W.A. (1986), Robust Statistics the
    approach based on Influence Functions, Wiley, New
    York
  • Huber P.J. (1981), Robust Statistics, Wiley, New
    York
  • Kreft I.G.G. (1996), Are multilevel technique
    necessary? An overview, including simulation
    studies, Technical Report, http//www.calstatela.e
    du/faculty/ikreft

27
References (3)
  • Laird N.M., Ware J.H. (1982), Random-effects
    models for longitudinal data, Biometrics, 38, pp.
    963-974
  • Langford I.H., Lewis T. (1998), Outliers in
    multilevel data, JRSS, Series A, 161, 2, pp.
    121-160
  • Maas C.J.M., Hox J. (2004a), Robustness issues in
    multilevel regression analysis, Statistica
    Neerlandica, 58, 2, pp. 127-137
  • Maas C.J.M., Hox J. (2004b), The influence of
    violations of assumptions on multilevel parameter
    estimates and their standard errors,
    Computational Statistics and Data Analysis, 46,
    pp. 427-440
  • Oman S.D. (1998), Calibration with random slopes,
    Biometrika, 85, pp. 439-449
  • Pinheiro C.J., Liu C., Wu Y. (1997), Robust
    estimation in linear mixed-effects models using
    the multivariate t distribution, Technical
    Report, Bell Labs.

28
References (4)
  • Pinheiro C.J., Bates D.M. (1996), Unconstrained
    parameterizations for variance-covariance matrix,
    Statistics and Computing, 6, pp. 289-296
  • Pinheiro C.J., Bates D.M. (2000), Mixed-Effects
    Models in S and S-Plus, Statistics and Computing,
    Springer-Verlag, New York
  • Riani M., Salini S. (2005), Robust and efficient
    multivariate calibration, Proceeding of ICORS
    Conference, Jyväskylä
  • Salini S. (2006), Robust multivariate
    calibration, in Zani S., Cerioli A., Riani M.,
    Vichi M. (eds.), Data Analysis, Classification
    and Forward Search, Springer, Berlin (in press)
  • Snijders T., Bosker R. (1999), Multilevel
    Analysis An Introduction to basic and advanced
    multilevel modeling, Sage Publications, London
  • Solaro N. (2004), Random variate generation from
    Multivariate Exponential Power distribution,
    Statistica Applicazioni, II, 2, pp. 2544

29
References (5)
  • Solaro N., Ferrari P.A. (2006a), Robustness of
    parameter estimation procedures in multilevel
    models when random effects are MEP distributed,
    to appear in Statistical Methods and
    Applications, Springer-Verlag
  • Solaro N., Ferrari P.A. (2006b), The effects of
    MEP distributed random effects on variance
    component estimation in multilevel models, in
    Zani S., Cerioli A., Riani M., Vichi M. (eds.),
    Data Analysis, Classification and Forward Search.
    Springer, Berlin (in press).
  • Verbeke G., Lesaffre E. (1997), The effect of
    misspecifying the random-effects distribution in
    linear mixed models for longitudinal data,
    Computational Statistics and Data Analysis, 23,
    pp. 541-556
  • Zappa D., Salini S. (2005), Some notes on
    confidence regions in multivariate calibration,
    Univ. Cattolica del Sacro Cuore, Istituto di
    Statistica, Serie E.P. N. 118
  • Walczak B. (1995), Outlier detection in
    multivariate calibration, Chemiometrics and
    Intelligent Laboratory System, 28, pp. 259-272
Write a Comment
User Comments (0)
About PowerShow.com