Title: Lisbon, 1721 July 2006
1Robustness and Multilevel Models
Silvia Salini, Pier Alda Ferrari Department of
Economics, Business and Statistics University of
Milan silvia.salini_at_unimi.it pieralda.ferrari_at_unim
i.it
Nadia Solaro Department of Statistics University
of Milan - Bicocca nadia.solaro_at_unimib.it
2Outline
- Introduction to Linear Multilevel Models
- Robustness in multilevel models
- Multilevel models for robustness Statistical
Calibration - Robustness issues in statistical calibration
- Multilevel Calibration Estimator
- Simulation Study
- Group Diagnostics
- Application Concrete Blocks data
- Conclusion
3Introduction (1)
- Multilevel models a modelling approach for the
analysis of data organized in hierarchical
structures, or more generally, in multilevel
structures - (Goldstein (1995), Snijders and Bosker (1999))
- Parameter estimation procedures account for
correlated data within groups - Between-groups variance parameters involved in
these models
4Introduction (2)
- Connection robustness and multilevel models
according to a dual direction of analysis - 1. Robustness in multilevel models
- In the current acceptation Robustness with the
sense of Resistance to the presence of either
outliers or misspecifications of model error
distributions - Are maximum likelihood estimators for model
parameters sensitive to misspecifications of
random-effects distributions?
5Introduction (3)
- Connection robustness and multilevel models
according to a dual direction of analysis - 2. Multilevel models for robustness
- Multilevel modelling referred to as a robust
methodology when data are grouped - In the statistical calibration framework does the
multilevel model methodology offer a valid tool
when data are grouped and the classical estimator
fails the expected performance?
6Linear multilevel models for two-level nesting
structures
- Model formulation
- nj units within group (level-1 units)
- J groups (level-2 units)
- Laird and Wares matrix formulation
(Biometrics,1982)
Assumptions
7Parameter Estimation
Unknown parameters fixed effects (?), level-one
and level-two variance components (?2 and ?hm)
- Main estimation methods
- Extension of Generalized Least Squares
- IGLS/RIGLS (Goldstein, 1995)
- Maximum likelihood approach ML/REML
- (e.g. Pinheiro and Bates, 2000)
- Gaussian Multilevel Model
81. Robustness in multilevel models
- In a series of papers Solaro and Ferrari deal
with the problem of maximum likelihood estimator
performance when the random-effects distribution
is misspecified - The considered misspecifications concern kurtosis
departures, which are described by the family of
Multivariate Exponential Power distributions - The main problems arise in the estimation of the
standard errors of level-2 variance component
estimators - Solaro and Ferrari, Stat. Meth. Applic., 2006
- Solaro and Ferrari, in Zani S., Cerioli A.,
Riani M., Vichi M. (eds.), Data Analysis,
Classification and Forward Search. Springer,
Berlin (in press)
92. Multilevel models for robustnessStatistical
Calibration
Calibration experiment
X(X1, X2,.Xp) standard method
Y1(Y11, Y12,.Y1q) test method
Prediction experiment
Y2(Y21, Y22,.Y2q)
?
10Statistical Calibration
p q
MLE Classical Estimator
Classical Estimator is asymptotically correct,
some problems occurs in determining confidence
regions (Zappa and Salini, 2005)
11Robustness issues in statistical calibration
- Robust regression methods
- (Cheng and Van Ness, 1997)
- Classic estimators on data with the outliers
rejected - (Walczak, 1995)
- Forward Search in Multivariate Calibration
- (Riani and Salini, 2005 Salini 2006)
12Forward Search in Multivariate Calibration
(Salini, 2006)
- Data 1 there are not outliers but only groups,
robust and classical estimators perform in the
same way - Data 2 outliers are present, robust estimators
fit better than the classical one
.
13Random parameters in statistical calibration
models
- Calibration with Randomly Changing Standard
Curves (Vecchia and Chapman, 1989) - Calibration with Random slopes (Oman, 1998)
- Prediction and inverse estimation in
repeated-measures models (Liski and Nummi, 1995) - Likelihood Methods for Controlled Calibration
(Bellio, 2003) -
14Multilevel Calibration Estimator
- Three different approaches (pq1)
- Unique calibration model (ignoring the grouping
structure) - Within-Group calibration estimator
15Predictions for values of Uj are given
by (BLUPs of the uj)
Multilevel Calibration Estimator
- Multilevel Calibration model
- Random intercept
- - calibr. step
- - pred. step
- Random intercept and random slope
- - calibr. step
- - pred. step
16Simulation Study
17Application Concrete Blocks data
- Building Industry
- The experiment is performed in order to determine
the strength of concrete blocks - standard method destructive, test method
sclerometer - N 1200, J 24
- Groups differs by concentration of cement,
temperature, - number of days from building
- training set (80 of data), test set (20 of
data)
18Application Concrete Blocks data
19Concrete Blocks data Forward Search Group
diagnostics Forward Bivariate Ellipsoid Plot
20Concrete Blocks data Multilevel model Level-2
residual diagnostics
Standardized level-2 residuals by Normal scores
(random intercept model), REML method
Likelihood ratio test ? 381.457, p 0.001
21Concrete Blocks data Multilevel model Level-2
residual diagnostics
95 -Confidence Intervals (random intercept
model), REML method
22Concrete Blocks data Multilevel model Level-2
residuals pairwise comparisons
95-Comparative Confidence Intervals (random
intercept model), REML method
23Application Concrete Blocks data
MSE in the test set. Runs consist in different
split of training and test set
24Conclusion and Prospects
- Group diagnostics in case of Normal Mixture by
using Random Forward Search approach (Riani et
al., 2006) - Developing the Multilevel model diagnostic tools
for the prediction step - Extension to more complex multilevel models of
the calibration methodology, especially in the
multivariate calibration framework - Integrating the Forward Search and the multilevel
model diagnostic tools to recognize grouping
structures in data when there arent natural
groups or when some of them are redundant
25References (1)
- Atkinson A.C., Riani M. (2000), Robust Diagnostic
Regression Analysis, Springer-Verlag, New York - Atkinson A.C., Riani M., Cerioli A. (2004),
Exploring Multivariate Data with the Forward
Search, Springer-Verlag, New York - Brown P.J., Sundberg R. (1989), Prediction
diagnostic and updating in multivariate
calibration, Biometrika, 72, pp. 349-361 - Brown P.J. (1982), Multivariate Calibration,
JRSS, Series B, 44, pp. 287-321 - Brown P.J. (1993), Measurement, Regression and
Calibration, Clarendon Press, Oxford - Cheng C.L., Van Ness J.W. (1997), Robust
calibration, Technometrics, 39, pp. 401-411 - Fang K.-T., Kotz S., Ng K.W. (1990), Symmetric
Multivariate and Related Distributions,
Monographs on Statistics and Applied Probability,
36, Chapman and Hall, New York
26References (2)
- Ferrari P.A., Solaro N. (2002), Una proposta per
le componenti erratiche del modello
multilivello. In Studi in onore di Angelo
Zanella, a cura di B.V. Frosini, U. Magagnoli,
G. Boari, VP Università, Milano, pp. 273 291 - Goldstein H. (1995), Multilevel Statistical
Models, 2nd edition, Kendalls Library of
Statistics, 3, Arnold Ed., London - Gómez E., Gómez-Villegas M.A., Marín J.M. (1998),
A multivariate generalization of the power
exponential family of distributions, Comm. Stat.
Theory and Methods, 27, 3, pp. 589-600 - Hampel F.R, Ronchetti E.M., Rousseeuw P.J.,
Stahel W.A. (1986), Robust Statistics the
approach based on Influence Functions, Wiley, New
York - Huber P.J. (1981), Robust Statistics, Wiley, New
York - Kreft I.G.G. (1996), Are multilevel technique
necessary? An overview, including simulation
studies, Technical Report, http//www.calstatela.e
du/faculty/ikreft
27References (3)
- Laird N.M., Ware J.H. (1982), Random-effects
models for longitudinal data, Biometrics, 38, pp.
963-974 - Langford I.H., Lewis T. (1998), Outliers in
multilevel data, JRSS, Series A, 161, 2, pp.
121-160 - Maas C.J.M., Hox J. (2004a), Robustness issues in
multilevel regression analysis, Statistica
Neerlandica, 58, 2, pp. 127-137 - Maas C.J.M., Hox J. (2004b), The influence of
violations of assumptions on multilevel parameter
estimates and their standard errors,
Computational Statistics and Data Analysis, 46,
pp. 427-440 - Oman S.D. (1998), Calibration with random slopes,
Biometrika, 85, pp. 439-449 - Pinheiro C.J., Liu C., Wu Y. (1997), Robust
estimation in linear mixed-effects models using
the multivariate t distribution, Technical
Report, Bell Labs.
28References (4)
- Pinheiro C.J., Bates D.M. (1996), Unconstrained
parameterizations for variance-covariance matrix,
Statistics and Computing, 6, pp. 289-296 - Pinheiro C.J., Bates D.M. (2000), Mixed-Effects
Models in S and S-Plus, Statistics and Computing,
Springer-Verlag, New York - Riani M., Salini S. (2005), Robust and efficient
multivariate calibration, Proceeding of ICORS
Conference, Jyväskylä - Salini S. (2006), Robust multivariate
calibration, in Zani S., Cerioli A., Riani M.,
Vichi M. (eds.), Data Analysis, Classification
and Forward Search, Springer, Berlin (in press) - Snijders T., Bosker R. (1999), Multilevel
Analysis An Introduction to basic and advanced
multilevel modeling, Sage Publications, London - Solaro N. (2004), Random variate generation from
Multivariate Exponential Power distribution,
Statistica Applicazioni, II, 2, pp. 2544
29References (5)
- Solaro N., Ferrari P.A. (2006a), Robustness of
parameter estimation procedures in multilevel
models when random effects are MEP distributed,
to appear in Statistical Methods and
Applications, Springer-Verlag - Solaro N., Ferrari P.A. (2006b), The effects of
MEP distributed random effects on variance
component estimation in multilevel models, in
Zani S., Cerioli A., Riani M., Vichi M. (eds.),
Data Analysis, Classification and Forward Search.
Springer, Berlin (in press). - Verbeke G., Lesaffre E. (1997), The effect of
misspecifying the random-effects distribution in
linear mixed models for longitudinal data,
Computational Statistics and Data Analysis, 23,
pp. 541-556 - Zappa D., Salini S. (2005), Some notes on
confidence regions in multivariate calibration,
Univ. Cattolica del Sacro Cuore, Istituto di
Statistica, Serie E.P. N. 118 - Walczak B. (1995), Outlier detection in
multivariate calibration, Chemiometrics and
Intelligent Laboratory System, 28, pp. 259-272