Monte Carlo Simulation of Step Fluctuation Hailu Gebremariam Bantu - PowerPoint PPT Presentation

1 / 9
About This Presentation
Title:

Monte Carlo Simulation of Step Fluctuation Hailu Gebremariam Bantu

Description:

Monte Carlo Simulation of Step Fluctuation. Hailu Gebremariam Bantu. Vicinal surfaces - isolated step. Basics of the fluctuation. Three physical quantities considered: ... – PowerPoint PPT presentation

Number of Views:116
Avg rating:3.0/5.0
Slides: 10
Provided by: math50
Category:

less

Transcript and Presenter's Notes

Title: Monte Carlo Simulation of Step Fluctuation Hailu Gebremariam Bantu


1
Monte Carlo Simulation of Step FluctuationHailu
Gebremariam Bantu
  • Vicinal surfaces - isolated step

2
Basics of the fluctuationThree physical
quantities consideredWidth, correlation
function, survival probability
  • Width
  • Small t large t -
  • Dynamic constant z a/ß

3
  • Correlation function
  • - G(t) lt(dx(i,t) dx(i,0))2gt
  • G(t) t(1/z)
  • - C(t) ltdx(i,t)dx(i,0)gt
  • for large t C(t) exp(-t/tc)
  • where tc is correlation time
  • Survival probability a point doesnt return to
    average value over time t.
  • for large time S(t) exp(-t/ts)

4
The simulation
  • Initialization straight step
  • Updating - metropolis algorithm
  • . Randomly choose a point x(i)
  • . Choose a direction dir 1 or 1
  • . Calculate the energy difference
  • dE abs(x(i1) x(i) dir)
    abs(x(i-1) x(i) dir) abs(x(i1) x(i))
    abs(x(i-1) x(i))
  • If dE lt0, the move is accepted.
  • if dE gt 0, generate random number
    0ltr2lt1
  • if exp(-dE/T) gt r2, the move
    is accepted.
  • T temperature parameter
  • create array of exp(-dE/T) with 5
    elements.
  • 3. Measurement - width, correlation, survival
  • optimizing

5
Optimizing
  • Width
  • sum2 0.0
  • sum 0.0
  • for(j0jltLj)
  • sumxj
  • sum2xjxj
  • var sqrt(sum2/L (sum/L)(sum/L))

6
Optimizing -2
  • Correlation
  • for(j0jltLj)
  • for(t0tltNDATAt)
  • autocorrjt0.0
  • for(k0klt(NDATA-t)k)
  • autocorrjt(dhjkt
    dhjk) (dhjkt dhjk)
  • autocorrjtautocorrjt/(NDATA-t)
  • for(t0tltNDATAt)
  • acorrfmt0.0
  • for(j0jltLj)
  • acorrfmtautocorrjt
  • acorrfmt acorrfmt/L
  • for(j0jltLj)
  • for(t0tltNDATAt)
  • autocorrjt0.0
  • for(k0klt(NDATA-t)k)
  • autocorrjt(dhjkt-dhjk)
    (dhjkt dhjk)
  • autocorrtautocorrjt/(NDATA-t)
  • average it over L and different realizations

7
Results
  • The speed of the code
  • is improved by 75.
  • G correlation
  • G(t) t(1/z)
  • Z 2
  • A-correlation
  • C(t) exp(-t/tc)
  • tc 788 MCS

8
Survival probability
t
  • The probability that a point comes back to an
    average position.
  • ts 381 MCS
  • C tc/ts 0.5 lt 1
  • Agrees with a theorem

9
Conclusion
  • The speed is improved by 75 .
  • Simulation results can agree well with theory and
    experiments for large system size and with the
    speed improved this can be done easily.
  • Interacting steps can be simulated.
Write a Comment
User Comments (0)
About PowerShow.com