Title: BGIP Beam Gas Ionization Profile Monitor
1BGIPBeam Gas Ionization Profile Monitor
- Ana Arauzo, C. Bovet, J. Koopman, A. Variola
2Outline
- 1. Device Description
- 1.1 Working principle
- 1.2 Prototype
- 2. LHC Beam Diagnostics
- 2.1 Spectrum analysis Beam Emittance
- 2.2 Expected Performance
- 2.3 Additional Features
- 3. SPS tests
- 3.1 Beam conditions
- 3.2 Performances achieved, examples
- 4. Conclusions
31.1 Working principle
- Residual gas ionization acceleration by the
beam (no additional fields) - Ions spectrum Analysis ions are collected and
spatially resolved in energies. - Great accuracy non-destructive method
41.2 Prototype
B
H
vfm
Dm
5Prototype
62. LHC Beam Diagnostics2.1 Spectrum Analysis
- Edge ? M vfm2 a bln(? r )
- (a,b ? Beam Intensity)
- Width ? Beam ellipticity
- (flat beam ? 2 Detectors)
7(No Transcript)
8Beam Emittance
- Gaussian Density Profile rms ?r
- ?
- vfm
- M vfm2 a bln(? r )
- ?
- B
- vfm c B
a,b ? I c ? Dm/M
Error Transmission I , B, Dm
92.2 Expected Performance
- Non-perturbing
- Beam size monitoring whole Energy range 450 GeV
- 7 TeV - low energy residual gas ions, H, H2
- high energy injected gas ions, He, N2
- Great Accuracy better than 1
- ?r ? 1 Detector H or V
- ?x and ?y ? 2 Detectors H and V
- Great Resolution up to 0.1
102.3 Additional Features
- Spectrum from different species is spatially
resolved sweeping B - Amplitude ? ionization rate Pgas, ?ion
- Study of the beam density profile
- Information stored in the ion energy spectrum
shape
113. SPS Tests Beam conditions
- 26 GeV LHC type beam
- 84 proton bunches
- Intensity Np 0.7- 0.81011 p/bunch
- Vacuum 10-8 torr 2.3105 ions/s
- ?M ( ? r) 4.6 0.5 mm
- ?
- test limitations energy range or/and emittance
range, limits in precision and resolution
123.2 Performances Achieved
- Ion detected H2
- Measurement Dm(B) for almost the same beam size
- Signal for B 100 to 250 gauss
Accuracy in beam size determination
16 wire-scanner cross-checked
13174.3 G
14H-Profile ? Exp. Data ? Simulation
Dm fit ? Exp. Data ? Simulation (Dm limits
CCD)
15Errors in Beam conditions Emittance
?m 8 Intensity I 10
Error in simulated Dm 8 ??m ? 2 Dm 10 I ?
7 Dm
Results vs. simulations 4 rms deviations Dm data
Error in ??m determination 16
164. CONCLUSIONS
- BGIP predicts good performance for the LHC beam
parameters - Successful results obtained in the first tests
for a LHC-type beam
Advantages Non-perturbing high accuracy control
of the beam size over the whole LHC energy range
Disadvantages No physical measurement of the beam
density profile
17References
- 1. Buon J. et al., NIM A306, 93-111 (1991)
- 2. Puzo P. et al., NIM A425, 415-430 (1999)
- 3. Arauzo A. et al., LHC Project Note 198 (1999)
18Acknowledgments
- J. Buon and P. Puzo for their support in the
theoretical calculations and detector design. - R. Perret, J. Camas, M. Sillanoli, J. Colchester
for the practical realization and installation. - R. Jung for the general support
- J.J. Gras for the software support
- Gijs de Rijk for the dipole magnet measurements