Title: Lecture 50 Solutions III
1Lecture 50 - Solutions III
2Today...
- Colligative properties
- vapor pressure of a solution
- freezing point depression
- boiling point elevation
- osmotic pressure
3Colligative Properties
- In a solution
- pvap is lower
- Tb is higher
- Tf is lower
- than in the pure solvent
- Depends only on the amount of solute, not on its
identity
4Vapor Pressure Lowering
- I. Solute is non-volatile
surface of pure solvent
surface of solution - less evaporation
5Vapor Pressure Lowering
same in pure solvent and solution
smaller in solution (more disorder in a solution)
Thus, DGvap is more positive for a solution
(less favorable)
6Vapor Pressure Lowering
- I. Solute is involatile
- psoln posolv ½ Xsolv
Vapor pressure of Pure solvent
(1 - Xsolute)
(Raoults Law)
7Vapor Pressure Lowering
- e.g. find psoln for 5 m glucose at 25oC
- 1. posolv pvap,H2O (25oC) 23.76 Torr
3. nglucose 5 mol nH2O 1000g/18g mol-1
55.5 mol
8Vapor Pressure Lowering
nH2O
55.5
4. Xsolv
0.917
nH2O nglucose
55.5 5
5. psoln posolv ½ Xsolv
23.76 Torr x 0.917 21.79 Torr
(would be the same for any 5 m solute)
9Salt Solutions
- N.B. salts dissociate!
- Na2SO4 ? 2 Na SO4-2
1 m
? 3 m
10Salt Solutions
- strong intermolecular forces - lower pvap
than Raoults Law predicts - non-ideal solution
ions
11Vapor Pressure Lowering
- II. Solute is Volatile
- Solvent A
- Solute B
- pA pAo XA
vapor pressure of A above solution
vapor pressure of pure A
similarly, pB pBo XB
12Vapor Pressure Lowering
13Vapor Pressure Lowering
DHsolngt0
pBo
ideal
pAo
ptot
DHsolnlt0
XA
0
1
14Boiling Point Elevation
S
L
P
1
G
DTb
Tb
T
15Boiling Point Elevation
- DTb µ Dpvap
- Dpvap µ msolute
- thus, DTb µ msolute
- in fact, DTb Kb msolute
16Boiling Point Elevation
ebullioscopic constant
Kb is a function of the SOLVENT e.g. Kb (H2O)
0.51 oC kg mol-1
17Boiling Point Elevation
- e.g. find Tb of 0.5 m NaCl(aq)
- DTb Kb msolute
- 0.51 oC kg mol-1 x 1.0 mol kg-1
- 0.51oC
- i.e. Tb 100.51oC
18Boiling Point Elevation
- e.g. 18.0 g glucose in 150 g H2O
- boils at 100.34oC.
- Find the molar mass of glucose
- 1. DTb Kb msolute or
- msolute DTb / Kb
- 0.34oC / 0.51 oC kg mol-1
- 0.67 mol kg-1
19Boiling Point Elevation
nglucose
2. 0.67 mol kg-1
0.15 kg solvent
solving, nglucose 0.10 mol
18.0 g
3. molar mass of glucose
0.10 mol
180 g mol-1
20Boiling Point Elevation
S
L
P
1
G
DTb
DTf
Tb
T
21Freezing Point Depression
cryoscopic constant
Kf is a function of the SOLVENT e.g. Kf (H2O)
1.86 oC kg mol-1
22Freezing Point Depression
- e.g. antifreeze, ethylene glycol(aq)
H-O
H-O
HCCH
how much must be added to 10.0 L H2O if Tf lt
-40oC?
23Freezing Point Depression
- 1. DTf Kf msolute or
- msolute DTf / Kf
- 40oC / 1.86 oC kg mol-1
- 21.5 mol (kg solvent)-1
- 2. 10.0 L H2O 10.0 kg H2O
-
nglycol
3. 21.5 mol kg-1
10.0 kg H2O
24Freezing Point Depression
- solving, nglycol 215 mol
- 4. 215 mol 215 mol x 62.1 g mol-1
- 13,350 g
- 13.35 kg
13.35
wt glycol
x 100 57
13.35 10.0
25Freezing Point Depression
- e.g. melting ice
- DTf Kf mNaCl
- assume mNaCl 3.25 m
- we predict DTf 1.86 (6.5)
- 12.1oC
- actual 11.9oC
26Freezing Point Depression
Cl-
Na
Cl-
Cl-
Cl-
Actual (effectively fewer particles)
Expected
27Road salt is ineffective below -20.7oC...
- ...saturated NaCl(aq) freezes at this temperature
28Osmosis
Osmotic Pressure (P)
solvent flow
solvent flow
pure solvent
solution
semi-permeable membrane
29Osmotic Pressure
P osmotic pressure M molarity of solute R
gas constant T absolute temperature
30Osmotic Pressure
- e.g. 1 mg of a protein is
- dissolved in 1 mL H2O.
- P 1.12 Torr at 25oC
- Find the MW of the protein.
- 1. P 1.12 Torr 1.12/760 0.00147 atm
- 2. R 0.082 L atm K-1 mol-1
- 3. T 25oC 298 K
31Osmotic Pressure
P
4. M
RT
0.00147 atm
0.082 L atm K-1 mol-1 (298 K)
6.01 x 10-5 mol L-1
5. 1 mg/mL 1 g/L
thus, 1 g 6.01 x 10-5 mol
32Osmotic Pressure
1.0 g
6. MW
6.01 x 10-5 mol
16,600 g mol-1
(a SMALL protein)
33Reverse Osmosis
pgtP
solvent flow!
pure solvent
solution