An Analysis of Convex Relaxations - PowerPoint PPT Presentation

1 / 80
About This Presentation
Title:

An Analysis of Convex Relaxations

Description:

An Analysis of Convex Relaxations. M. Pawan Kumar. Vladimir Kolmogorov. Philip Torr. for MAP Estimation. Aim. 2. 5. 4. 2. 6. 3. 3. 7. 0. 1. 1. 0. 0. 2. 3. 1. 1. 4 ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 81
Provided by: philg6
Category:

less

Transcript and Presenter's Notes

Title: An Analysis of Convex Relaxations


1
An Analysis of Convex Relaxations
for MAP Estimation
  • M. Pawan Kumar
  • Vladimir Kolmogorov
  • Philip Torr

2
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Random Variables V V1, ... ,V4
Label Set L 0, 1
Labelling m 1, 0, 0, 1
3
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2
4
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1
5
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2
6
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1
7
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1 3
8
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1 3 1
9
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1 3 1 3
10
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1 3 1 3 13
Pr(m) ? exp(-Cost(m))
Minimum Cost Labelling MAP estimate
11
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Cost(m) 2 1 2 1 3 1 3 13
NP-hard problem
Which approximate algorithm is the best?
12
Aim
  • To analyze convex relaxations for MAP estimation

6
3
0
1
2
4
0
Label 1
1
2
4
1
1
3
Label 0
1
0
5
3
7
0
2
V2
V3
V4
V1
Objectives
  • Compare existing convex relaxations LP, QP and
    SOCP
  • Develop new relaxations based on the comparison

13
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations

14
Integer Programming Formulation
2
4
0
Unary Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
2 4
2
Unary Cost Vector u 5
15
Integer Programming Formulation
2
4
0
Unary Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
2 4 T
2
Unary Cost Vector u 5
Label vector x -1
1
1 -1 T
Recall that the aim is to find the optimal x
16
Integer Programming Formulation
2
4
0
Unary Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
2 4 T
2
Unary Cost Vector u 5
Label vector x -1
1
1 -1 T
1
Sum of Unary Costs
?i ui (1 xi)
2
17
Integer Programming Formulation
2
4
0
Pairwise Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
0
3
0
18
Integer Programming Formulation
2
4
0
Pairwise Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
Sum of Pairwise Costs
1
?ij Pij (1 xi)(1xj)
0
3
0
4
19
Integer Programming Formulation
2
4
0
Pairwise Cost
Label 1
1
3
Label 0
5
0
2
V2
V1
Labelling m 1 , 0
Sum of Pairwise Costs
1
?ij Pij (1 xi xj xixj)
0
3
0
4
X x xT
Xij xi xj
20
Integer Programming Formulation
Constraints
  • Integer Constraints

xi ?-1,1
X x xT
21
Integer Programming Formulation
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
Convex
xi ?-1,1
X x xT
22
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Linear Programming (LP-S)
  • Semidefinite Programming (SDP-L)
  • Second Order Cone Programming (SOCP-MS)
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations

23
LP-S
Schlesinger, 1976
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
Relax Non-Convex Constraint
xi ?-1,1
X x xT
24
LP-S
Schlesinger, 1976
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Relax Non-Convex Constraint
X x xT
25
LP-S
Schlesinger, 1976
X x xT
Xij ?-1,1
1 xi xj Xij 0
26
LP-S
Schlesinger, 1976
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Relax Non-Convex Constraint
X x xT
27
LP-S
Schlesinger, 1976
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1,
Xij ?-1,1
LP-S
1 xi xj Xij 0
28
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Linear Programming (LP-S)
  • Semidefinite Programming (SDP-L)
  • Second Order Cone Programming (SOCP-MS)
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations
  • Experiments

29
SDP-L
Lasserre, 2000
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
Relax Non-Convex Constraint
xi ?-1,1
X x xT
30
SDP-L
Lasserre, 2000
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Relax Non-Convex Constraint
X x xT
31
SDP-L
.
.
.
1
1
x1
x2
xn
x1
x2
.
.
.
xn
Xii 1
Positive Semidefinite
Rank 1
32
SDP-L
.
.
.
1
1
x1
x2
xn
x1
x2
.
.
.
xn
Xii 1
Positive Semidefinite
33
Schurs Complement
A
B
BT
C
34
SDP-L
1
xT
x
X
35
SDP-L
Lasserre, 2000
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Relax Non-Convex Constraint
X x xT
36
SDP-L
Lasserre, 2000
Retain Convex Part
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
SDP-L
Xii 1
Inefficient
Accurate
37
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Linear Programming (LP-S)
  • Semidefinite Programming (SDP-L)
  • Second Order Cone Programming (SOCP-MS)
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations

38
SOCP Relaxation
Derive SOCP relaxation from the SDP relaxation
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Xii 1
Further Relaxation
39
1-D Example
For two semidefinite matrices, Frobenius inner
product is non-negative
X - x2 0
x2 ? X
1
SOC of the form v 2 ? st
40
2-D Example
X11
X12
X
X21
X22
41
2-D Example
(X - xxT)
1 - x12
X12-x1x2
X12-x1x2
1 - x22
x12 ? 1
-1 ? x1 ? 1
42
2-D Example
C2. ? 0
C2 0
(X - xxT)
1 - x12
X12-x1x2
X12-x1x2
1 - x22
x22 ? 1
-1 ? x2 ? 1
43
2-D Example
C3. ? 0
C3 0
(X - xxT)
1 - x12
X12-x1x2
X12-x1x2
1 - x22
(x1 x2)2 ? 2 2X12
SOC of the form v 2 ? st
44
2-D Example
C4. ? 0
C4 0
(X - xxT)
1 - x12
X12-x1x2
X12-x1x2
1 - x22
(x1 - x2)2 ? 2 - 2X12
SOC of the form v 2 ? st
45
SOCP Relaxation
C1 . ? 0
Kim and Kojima, 2000
UTx 2 ? X . C1
(X - xxT)
SOC of the form v 2 ? st
Continue for C2, C3, , Cn
46
SOCP Relaxation
How many constraints for SOCP SDP ?
Infinite. For all C 0
Specify constraints similar to the 2-D example
Xij
xi
xj
(xi xj)2 ? 2 2Xij
(xi xj)2 ? 2 - 2Xij
47
SOCP-MS
Muramatsu and Suzuki, 2003
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
Xii 1
48
SOCP-MS
Muramatsu and Suzuki, 2003
1
1
? Pij (1 xi xj Xij)
x argmin
? ui (1 xi)

4
2
xi ?-1,1
(xi xj)2 ? 2 2Xij
(xi - xj)2 ? 2 - 2Xij
49
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations

50
Dominating Relaxation

A
B
For all MAP Estimation problem (u, P)
A dominates B
Dominating relaxations are better
51
Equivalent Relaxations

A
B
For all MAP Estimation problem (u, P)
A dominates B
B dominates A
52
Strictly Dominating Relaxation
gt
A
B
For at least one MAP Estimation problem (u, P)
A dominates B
B does not dominate A
53
SOCP-MS
Muramatsu and Suzuki, 2003
(xi xj)2 ? 2 2Xij
(xi - xj)2 ? 2 - 2Xij
  • Pij 0
  • Pij lt 0

SOCP-MS is a QP
Same as QP by Ravikumar and Lafferty, 2005
SOCP-MS QP-RL
54
LP-S vs. SOCP-MS
Differ in the way they relax X xxT
55
LP-S vs. SOCP-MS
  • LP-S strictly dominates SOCP-MS
  • LP-S strictly dominates QP-RL
  • Where have we gone wrong?
  • A Quick Recap !

56
Recap of SOCP-MS
Xij
xi
xj
(xi xj)2 ? 2 2Xij
57
Recap of SOCP-MS
Xij
xi
xj
(xi - xj)2 ? 2 - 2Xij
Can we use different C matrices ??
Can we use a different subgraph ??
58
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • SOCP Relaxations on Trees
  • SOCP Relaxations on Cycles
  • Two New SOCP Relaxations

59
SOCP Relaxations on Trees
Choose any arbitrary tree
60
SOCP Relaxations on Trees
Choose any arbitrary C 0
Repeat over trees to get relaxation SOCP-T
LP-S strictly dominates SOCP-T
LP-S strictly dominates QP-T
61
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • SOCP Relaxations on Trees
  • SOCP Relaxations on Cycles
  • Two New SOCP Relaxations

62
SOCP Relaxations on Cycles
Choose an arbitrary even cycle
Pij 0
OR
Pij 0
63
SOCP Relaxations on Cycles
Choose any arbitrary C 0
Repeat over even cycles to get relaxation SOCP-E
LP-S strictly dominates SOCP-E
LP-S strictly dominates QP-E
64
SOCP Relaxations on Cycles
  • True for odd cycles with Pij 0
  • True for odd cycles with Pij 0 for only one
    edge
  • True for odd cycles with Pij 0 for only one
    edge
  • True for all combinations of above cases

65
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations
  • The SOCP-C Relaxation
  • The SOCP-Q Relaxation

66
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
Non-submodular
Submodular
Submodular
67
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
c
a
a
b
b
c
Frustrated Cycle
68
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
c
a
a
b
b
c
LP-S Solution
Objective Function 0
69
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
c
a
a
b
b
c
LP-S Solution
1
1
-1
0
0
0
0
0
0
-1
-1
-1
-1
1
1
0
0
0
0
0
0
1
-1
1
c
a
a
b
b
c
Define an SOC Constraint using C 1
70
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
c
a
a
b
b
c
LP-S Solution
1
1
-1
0
0
0
0
0
0
-1
-1
-1
-1
1
1
0
0
0
0
0
0
1
-1
1
c
a
a
b
b
c
(xi xj xk)2 ? 3 2 (Xij Xjk Xki)
71
The SOCP-C Relaxation
Include all LP-S constraints
True SOCP
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
c
a
a
b
b
c
SOCP-C Solution
Objective Function 0.75
SOCP-C strictly dominates LP-S
72
Outline
  • Integer Programming Formulation
  • Existing Relaxations
  • Comparison
  • Generalization of Results
  • Two New SOCP Relaxations
  • The SOCP-C Relaxation
  • The SOCP-Q Relaxation

73
The SOCP-Q Relaxation
Include all cycle inequalities
True SOCP
a
b
Clique of size n
c
d
Define an SOCP Constraint using C 1
(S xi)2 n (S Xij)
SOCP-Q strictly dominates LP-S
SOCP-Q strictly dominates SOCP-C
74
4-Neighbourhood MRF
Test SOCP-C
50 binary MRFs of size 30x30
u N (0,1)
P N (0,s2)
75
4-Neighbourhood MRF
s 2.5
76
8-Neighbourhood MRF
Test SOCP-Q
50 binary MRFs of size 30x30
u N (0,1)
P N (0,s2)
77
8-Neighbourhood MRF
s 1.125
78
Conclusions
  • Large class of SOCP/QP dominated by LP-S
  • New SOCP relaxations dominate LP-S
  • More experimental results in poster

79
Future Work
  • Comparison with cycle inequalities
  • Determine best SOC constraints
  • Develop efficient algorithms for new relaxations

80
Questions ??
Write a Comment
User Comments (0)
About PowerShow.com