titel - PowerPoint PPT Presentation

1 / 99
About This Presentation
Title:

titel

Description:

[Chapter 8: sections 8.4 and Chapter 9 from Principles of Data Mining by Hand, ... a Voronoi tessellation, Voronoi decomposition, Dirichlet tessellation), is a ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 100
Provided by: ronald60
Category:

less

Transcript and Presenter's Notes

Title: titel


1
DATA MINING van data naar informatie Ronald
Westra Dep. Mathematics Maastricht University
2
CLUSTERING AND CLUSTER ANALYSIS
  • Data Mining Lecture IV
  • Chapter 8 sections 8.4 and Chapter 9 from
    Principles of Data Mining by Hand,, Manilla,
    Smyth

3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
(No Transcript)
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
DATA ANALYSIS AND UNCERTAINTY
  • Data Mining Lecture V
  • Chapter 4, Hand, Manilla, Smyth

51
Random Variables 4.3 multivariate random
variablesmarginal densityconditional density
dependency p(xy) p(x,y) / p(y) example
supermarket purchases
RANDOM VARIABLES
52
Example supermarket purchasesX n customers x
p products X(i,j) Boolean variable Has
customer i bought a product of type p ? nA
sum(X(,A)) is number of customers that bought
product AnB sum(X(,B)) is number of customers
that bought product BnAB sum(X(,A).X(,B))
is number of customers that bought product B
Demo matlab conditionaldensity
RANDOM VARIABLES
53
(conditionally) independent p(x,y) p(x)p(y)
i.e.  p(xy) p(x)
RANDOM VARIABLES
54
RANDOM VARIABLES
55
RANDOM VARIABLES
56
RANDOM VARIABLES
57
SAMPLING
58
ESTIMATION
59
Maximum Likelihood Estimation
60
Maximum Likelihood Estimation
61
Maximum Likelihood Estimation
62
BAYESIAN ESTIMATION
63
BAYESIAN ESTIMATION
64
BAYESIAN ESTIMATION
65
BAYESIAN ESTIMATION
66
BAYESIAN ESTIMATION
67
(No Transcript)
68
PROBABILISTIC MODEL-BASED CLUSTERING USING
MIXTURE MODELS
  • Data Mining Lecture VI
  • 4.5, 8.4, 9.2, 9.6, Hand, Manilla, Smyth

69
(No Transcript)
70
(No Transcript)
71
(No Transcript)
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
(No Transcript)
79
Jensens inequality
80
for a concave-down function, the expected value
of the function is less than the function of the
expected value. The gray rectangle along the
horizontal axis represents the probability
distribution of x, which is uniform for
simplicity, but the general idea applies for any
distribution
81
(No Transcript)
82
(No Transcript)
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
(No Transcript)
96
(No Transcript)
97
(No Transcript)
98
(No Transcript)
99
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com