Title: titel
1DATA MINING van data naar informatie Ronald
Westra Dep. Mathematics Maastricht University
2CLUSTERING AND CLUSTER ANALYSIS
- Data Mining Lecture IV
- Chapter 8 sections 8.4 and Chapter 9 from
Principles of Data Mining by Hand,, Manilla,
Smyth
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50DATA ANALYSIS AND UNCERTAINTY
- Data Mining Lecture V
- Chapter 4, Hand, Manilla, Smyth
51Random Variables 4.3 multivariate random
variablesmarginal densityconditional density
dependency p(xy) p(x,y) / p(y) example
supermarket purchases
RANDOM VARIABLES
52Example supermarket purchasesX n customers x
p products X(i,j) Boolean variable Has
customer i bought a product of type p ? nA
sum(X(,A)) is number of customers that bought
product AnB sum(X(,B)) is number of customers
that bought product BnAB sum(X(,A).X(,B))
is number of customers that bought product B
Demo matlab conditionaldensity
RANDOM VARIABLES
53(conditionally) independent p(x,y) p(x)p(y)
i.e. p(xy) p(x)
RANDOM VARIABLES
54RANDOM VARIABLES
55RANDOM VARIABLES
56RANDOM VARIABLES
57SAMPLING
58ESTIMATION
59Maximum Likelihood Estimation
60Maximum Likelihood Estimation
61Maximum Likelihood Estimation
62BAYESIAN ESTIMATION
63BAYESIAN ESTIMATION
64BAYESIAN ESTIMATION
65BAYESIAN ESTIMATION
66BAYESIAN ESTIMATION
67(No Transcript)
68PROBABILISTIC MODEL-BASED CLUSTERING USING
MIXTURE MODELS
- Data Mining Lecture VI
- 4.5, 8.4, 9.2, 9.6, Hand, Manilla, Smyth
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79Jensens inequality
80for a concave-down function, the expected value
of the function is less than the function of the
expected value. The gray rectangle along the
horizontal axis represents the probability
distribution of x, which is uniform for
simplicity, but the general idea applies for any
distribution
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)