ANALYSIS AND VISUALIZATION - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

ANALYSIS AND VISUALIZATION

Description:

Group3: Living Factor (Temporal domain) Group4: Histogram of Time ... ROI Spatial Coherency in Temporal domain. Analyze process behavior in terms of Activity ... – PowerPoint PPT presentation

Number of Views:40
Avg rating:3.0/5.0
Slides: 41
Provided by: salila9
Category:

less

Transcript and Presenter's Notes

Title: ANALYSIS AND VISUALIZATION


1
  • ANALYSIS AND VISUALIZATION
  • OF TIME-VARYING DATA
  • USING ACTIVITY MODELING
  • By
  • Salil R. Akerkar
  • Advisor
  • Dr Bernard P. Zeigler
  • ACIMS LAB (University of Arizona)

2
Presentation Outline
  • Introduction
  • Activity A DEVS Concept
  • Activity Modeler System
  • Stage1 - Preprocessing
  • Stage2 - Activity Engine
  • Stage3 - Visualization
  • Results
  • Implications for Discrete Event Simulation
  • Future Work

3
Introduction
  • Data Source and Problem under study
  • Current trends
  • Unexplored area
  • Motivation Discrete Events vs. Discrete Time

4
Activity A DEVS Concept
  • Definition of Activity

5
Activity A DEVS Concept
  • Coherency (Space and Time)
  • Instantaneous Activity
  • Accumulated Activity (same as DEVS Activity)
  • Activity Domain

6
Activity Modeler System
Stage-1
Stage-2
Stage-3
Raw Data
GNUPLOT MODULES
RESULTS
RESULTS
PERL FORMATTER
ACTIVITY ENGINE
AVS- EXPRESS MODULES
ACTIVITY DATA
FORMATTED DATA
GNUPLOT MODULES
(OPTIONAL) PERL FORMATTER
7
Stage 1 Pre Processing
  • Why do we need pre-processing?
  • Regular Structure format
  • PERL formatter
  • Functions
  • Extract Information
  • Format
  • Correction Logic
  • Analyze part of information
  • 2D formatter
  • decrease IO operations
  • standardization

8
Stage 2 Activity Engine
THE ACTIVITY ENGINE
DATA-FILE
PATTERN INFORMATION
PATTERN PREDICTOR
--------------------
ACTIVITY GENERATOR
--------------------
GNUPLOT SCRIPTS
STATISTIC ANALYZER
DATA ENGINE
PERL Formatter
--------------------
--------------------
STATISTICAL INFORMATION
AVS-EXPRESS MODULES
--------------------
ACTIVITY TIME-SERVICES
ACTIVITY LOG
ACTIVITY DATA
9
Stage 2 Data Engine
  • Functions
  • File handling
  • Sequential / Random access
  • Standardization of filenames for automation
  • Memory Allocation
  • Transformation between domains
  • Cellular and Temporal
  • Transformation between dimensions
  • Val2Dij Val1DiColsj
  • Independent of spatial dimension

10
Stage 2 - Activity Generator
  • Instantaneous Activity
  • Accumulated Activity
  • Time Advances
  • Activity Factor (AF)
  • Cellular domain
  • Threshold (AF)

Activity factor
Cells ?
11
Stage 2 Statistic Analyzer
  • Extract Statistics in terms of groups
  • Group1 Maximum, Minimum, Range, Average
  • Group2 Standard deviation, Mean
  • Group3 Living Factor (Temporal domain)
  • Group4 Histogram of Time Advances
  • Static in nature
  • Provides meaningful threshold to
  • Activity Factor
  • Living Factor

12
Stage 2 Statistic Analyzer
  • Group 3 Living Factor (LF)
  • Temporal domain
  • Group 4 Histogram of Time Advances
  • Temporal domain
  • Logarithmic in scale

Time ?
Time ?
13
Stage 3 Pattern Predictor
  • Spatial and Temporal Coherency
  • Peaks and Max
  • Analyze activity pattern
  • Predict activity pattern

14
Stage 3 Pattern Predictor
  • Max Locator
  • Peak Locator
  • Difference in Peak and Max
  • False Peak problem
  • Eliminated by ROI
  • (Region of Imminence)

15
Stage 3 Region Of Imminence (ROI)
  • Definition
  • Steps
  • Peak Detection in IA
  • Scanning algorithm
  • Boundary conditions
  • Threshold conditions (?)
  • Significance
  • Imminence Factor

Cells ?
16
Stage 3 Pattern Predictor
  • 1D scanning algorithm
  • 2 neighbors
  • Binary visualization

Peak Under consideration 2 Location of cell
10 Initial Values Left-neighbor right-
neighbor 10 Final Values Left-neighbor
7 Right-neighbor 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33
Threshold condition
Boundary condition
Cells
17
Stage 3 Sphere Of Imminence
  • 2D scanning algorithm
  • 3 types of tuning
  • Coarse
  • Normal
  • Fine

18
Stage 3 Sphere Of Imminence
Fine Tuning
Coarse Tuning
Normal Tuning
19
Stage 3 Region Of Imminence
ROI Overcome the False Peak problem
20
Stage 3 Predict Pattern
  • 1D space
  • Linear Span Module
  • ? 0.9 0.95
  • Order of Pattern
  • Pattern attributes
  • Offset
  • Direction
  • Difference
  • Steps
  • Recognizing pattern tn,n1
  • 5 1st order pattern
  • 2 2nd order
  • Predicting pattern tn2,T

ROI
2nd Order 1st
Linear span
21
Stage 3 - Visualization
  • Softwares
  • GNUPLOT
  • AVS-Express
  • Visualization Stages
  • Reader (Import data)
  • Visualization modules
  • Writing stage

Reader
VIZ modules
Writer
22
Stage 3 - Visualization
  • Zero Padding
  • Binary Visualization
  • Advantages
  • Eliminating unwanted data
  • Reduction in file size
  • Implementation
  • set zrange 0.5

23
Stage 3 - Visualization
24
Results
  • 1D space
  • 1D heat diffusion process
  • Robot Activity
  • 2D space
  • 2D heat diffusion process
  • Fire-Front model

25
Results 1D Heat diffusion
  • 1D space ,T100
  • N10, 100, 200

N 100 10 200
Time?
Cells ?
Cells ?
26
Results Robot Activity
  • 1D space
  • Robots modeled as cells
  • Simulation time steps 2357
  • Data (Value domain)
  • 1- Robot moving
  • 0- Robot stopped
  • Activity domain
  • 1- State transition
  • 0- Same state

Robots ?
Time ?
27
Results Robot Activity
  • Living Factor
  • Activity Factor
  • Imminent groups

28
Results 2D diffusion
Histogram of Time Advances
  • 2D space
  • (100 x 100 cells)
  • T 50
  • Cellular domain results (2D)
  • Activity Factor
  • Statistics
  • Surface plot images
  • IA surface characterized by
  • concentric circles
  • tadv histogram lower end

Activity Factor
29
Results 2D diffusion
Movie of IA / AA (activity domain) and output
values (value domain)
30
Results Fire Front model
  • 2D space
  • (100 x 100 cells)
  • T 297

Movie for Value domain
31
Results Fire Front model
  • Living Factor
  • 20 maximum
  • t180 boundary
  • Imminence Factor
  • ? 0.7
  • t 50-150

Time?
32
Results Fire Front model
Accumulated Activity
Instantaneous Activity
Peak Bars
Region Of Imminence
33
Implications for Discrete Event Simulation
  • DEVS transitions
  • DTSS transitions
  • Maximum Slope
  • DEVS v/s DTSS

34
Implications for Discrete Event Simulation
DEVS v/s DTSS
35
Results Predict Pattern
1D diffusion (N100)
Test data - 3
36
Results
  • Results for 1D process
  • Test data
  • 1D diffusion
  • Percentage Error decreases as
  • N increases
  • ROI characterized by linear curves

37
Conclusion
  • New perspective for data analysis Activity
    domain
  • ROI Spatial Coherency in Temporal domain
  • Analyze process behavior in terms of Activity
  • Compute and Predict activity pattern
  • Results process specific
  • Predict Pattern - Error decreases as
  • N increases
  • ROI curves are characterized by linear curves
  • DEVS found to be more efficient than DTSS

38
Future Work
  • Extending system to data in 3D space
  • Extending system to UNIX platform
  • Enhancing the Pattern predictor module
  • Efficiently Detecting the new Imminent Cells in
    DEVS simulation

39
ACKNOWLEDGEMENTS
  • Dr. Bernard Zeigler
  • Dr. Salim Hariri
  • Dr. James Nutaro
  • Dr. Xiaolin Hu, Alex Muzy
  • Hans-Berhard Broeker
  • Cristina Siegerist
  • ACIMS LAB

40
  • QUESTIONS ?
Write a Comment
User Comments (0)
About PowerShow.com