Finite element analysis of springback in L-bending of sheet metal

About This Presentation
Title:

Finite element analysis of springback in L-bending of sheet metal

Description:

Springback is biggest problem to tolerances. FEM models allow for effect of die clearance, die radii, and step size to be ... Otherwise, bend leg remains strait ... –

Number of Views:744
Avg rating:3.0/5.0
Slides: 17
Provided by: pdi3
Learn more at: http://www.et.byu.edu
Category:

less

Transcript and Presenter's Notes

Title: Finite element analysis of springback in L-bending of sheet metal


1
Finite element analysis of springback in
L-bending of sheet metal
  • Y.E. Ling H.P. Lee B.T. Cheok

7 February 2007
A Presentation by Rose Wieland
2
Overview
  • Introduction
  • Set up
  • Effects of Die Clearance
  • Effects of Step Size
  • Conclusion/Recommendations

3
Introduction
  • Increasing demand for tight tolerances
  • Springback is biggest problem to tolerances
  • FEM models allow for effect of die clearance, die
    radii, and step size to be analyzed
  • Idea of how to minimize springback

4
(No Transcript)
5
History
  • 1958 first mathematical model for springback
    corrections
  • 1991/1992 FEM models used to analyze springback
  • Never in the paper is the accuracy of FEM models
    versus real experimental data discussed!

6
FEM Model
  • Die, punch, and pressure pad rigid
  • Workpiece is a deformable mesh
  • Die step height, step distance, die clearance,
    and
  • die radii varied
  • Material used AL2024-T3

7
Effects of Die Clearance
8
Bend Leg analysis
Bend leg curves between clearances of 1t and 0.8
t with maximum between 0.9 t and 0.95 t
Otherwise, bend leg remains strait
9
Stress Analysis
10
Effects of Die Radius
  • K springback factor
  • A bend angle after springback
  • A1 bend angle during bending

Springback factor of 1 most desirable
11
Effects of Step Height and Distance
12
Design Recommendations
  • Die radius, clearance, and step height and
    distance all effect springback
  • Die radius and clearance have greatest effect
  • Effects are exclusive and additive i.e.

die radius 2.0t die clearance 0.75t step
height 0.2t step distance 0t. springback
reduction for die radius 2.0t and die clearance
0.75t is 1.37? springback reduction for using a
step height of 0.2t and step distance 0t at that
die radius and clearance is 1.08? The total
springback reduction is 1.37? 1.08?
2.45? (values from Table 2 and Table 3)
13
Beware bend leg elongation
14
Accounting for Elongation
  • Radius most important factor to elongation
  • Bend leg elongation only happens at clearance
    less than the thickness
  • Step height and step distance do not alter bend
    allowances significantly

15
Conclusion
  • Established trends for effect of die clearance,
    die radius, step height and distance
  • Need for research with other materials
  • This research took 1000 hours
  • Perhaps small samples of other materials could be
    tested to show trends

16
References
  • 1 A.G. Gardiner, The spring back of metals,
    Trans. ASME, J. Appl.Mech. 79 (1957) 19.
  • 2 W. Johnson, T.X. Yu, Springback after the
    biaxial elastic-plastic pure bending of a
    rectangular plate I, Int. J. Mech. Sci. 23 (10)
    (1981)619630.
  • 3 W. Johnson, T.X. Yu, On the range of
    applicability of results forthe springback of an
    elastic/perfectly plastic rectangular plate
    aftersubjecting it to biaxial pure bending II,
    Int. J. Mech. Sci. 23 (10)(1981) 631637.
  • 4 R.A. Ayres, SHAPESET a process to reduce
    sidewall curl springbackin high-strength steel
    rails, J. Appl. Metalworking 3 (2) (1984)127172.
  • 5 C. Wang, G. Kinzel, T. Altan, Mathematical
    modeling of planestrainbending of sheet and
    plate, J. Mater. Proc. Tech. 39 (3/4)(1993)
    279304.
  • 6 Y.K.D.V. Prasad, S. Somasundaram,
    Mathematical model for bendallowance calculation
    in automated sheet-metal bending, J. Mater.
  • Proc. Tech. 39 (3/4) (1993) 337356.7 D.K. Leu,
    A simplified approach for evaluating bendability
    andspringback in plastic bending of anisotropic
    sheet metals, J. Mater.Proc. Tech. 66 (1997)
    917.
  • 8 J.C. Nagtegaal, L.M. Taylor, Comparison of
    implicit and explicitfinite element methods for
    analysis of sheet forming problems FESimulationof
    3-D Sheet Metal Forming Processes in
    AutomotiveIndustry, 894, VDI, Berichte, 1991, pp.
    705725.
  • 9 A.P. Karafillis, M.C. Boyce, Tooling design
    in sheet metal formingusing springback
    calculations, J. Mech. Sci. 34 (1992) 113131.
  • 10 H.B. Sim, M.C. Boyce, Finite element
    analyses of real time stabilitycontrol in sheet
    metal forming processes, ASME J. Eng.
    Mater.Technol. 114 (1992) 80188.
  • 11 M.J. Finn, P.C. Galbraith, L. Wu, J.O.
    Hallquist, L. Lum, T.L. Lin,Use of a Coupled
    ExplicitImplicit Solver for Calculating
    SpringBack in Automotive Body Panels, Livermore
    Software TechnologyCorporation, Livermore, CA,
    1992.
  • 12 L. Wu, C. Du amd, L. Zhang, Iterative FEM
    Die surface designto compensate for springback in
    sheetmetal stampings, inProceedings of NUMIFORM
    95, Ithaca, NY, 1995, pp. 637641.13 A.P.
    Karafillis, M.C. Boyce, Tooling and binder design
    for sheetmetal forming processes compensating
    springback error, Int. J. Mach.Tools Manuf. 36
    (4) (1996) 503526.
  • 14 M. Sunseri, J. Cao, A.P. Karafillis, M.C.
    Boyce, Accommodation ofspringback error in
    channel forming using active binder force
    controlnumerical simulations and experiments,
    ASME J. Eng. Mater.Technol. 118 (1996) 426434.
  • 15 Y. Ming, K. Manabe, H. Nishimura,
    Development of an intelligenttool system for
    flexible L-bending process of metal sheets,
    SmartMater. Struct. 7 (4) (1998) 530536.
  • 16 I.N. Chou, C. Hung, Finite element analysis
    and optimization onspringback reduction, Int. J.
    Mach. Tools Manuf. 39 (3) (1999)517536.
  • 17 M. Samuel, Experimental and numerical
    prediction of springbackand side wall curl in
    U-bending of anisotropic sheet metals, J.
    Mater.Proc. Tech 105 (3) (2000) 382393.
  • 18 N. Narkeeran, M. Lovell, Predicting
    springback in sheet metal formingan explicit to
    implicit sequential solution procedure, Finite
    Elements,Anal. Des. 33 (1) (1999) 2942.
  • 19 Baumeister, Avallone, Marks Standard
    Handbook For MechanicalEngineers, 8th ed.,
    McGraw-Hill, 1979.
  • 20 G. Sachs, Principles and Methods of Sheet
    Metal Fabricating, 2nded., Reinhold Publishing
    Corporation, New York, 1966.
Write a Comment
User Comments (0)
About PowerShow.com