Title: Finite element analysis of springback in L-bending of sheet metal
1Finite element analysis of springback in
L-bending of sheet metal
- Y.E. Ling H.P. Lee B.T. Cheok
7 February 2007
A Presentation by Rose Wieland
2Overview
- Introduction
- Set up
- Effects of Die Clearance
- Effects of Step Size
- Conclusion/Recommendations
3Introduction
- Increasing demand for tight tolerances
- Springback is biggest problem to tolerances
- FEM models allow for effect of die clearance, die
radii, and step size to be analyzed - Idea of how to minimize springback
4(No Transcript)
5History
- 1958 first mathematical model for springback
corrections - 1991/1992 FEM models used to analyze springback
- Never in the paper is the accuracy of FEM models
versus real experimental data discussed!
6FEM Model
- Die, punch, and pressure pad rigid
- Workpiece is a deformable mesh
- Die step height, step distance, die clearance,
and - die radii varied
- Material used AL2024-T3
7Effects of Die Clearance
8Bend Leg analysis
Bend leg curves between clearances of 1t and 0.8
t with maximum between 0.9 t and 0.95 t
Otherwise, bend leg remains strait
9Stress Analysis
10Effects of Die Radius
- K springback factor
- A bend angle after springback
- A1 bend angle during bending
Springback factor of 1 most desirable
11Effects of Step Height and Distance
12Design Recommendations
- Die radius, clearance, and step height and
distance all effect springback - Die radius and clearance have greatest effect
- Effects are exclusive and additive i.e.
die radius 2.0t die clearance 0.75t step
height 0.2t step distance 0t. springback
reduction for die radius 2.0t and die clearance
0.75t is 1.37? springback reduction for using a
step height of 0.2t and step distance 0t at that
die radius and clearance is 1.08? The total
springback reduction is 1.37? 1.08?
2.45? (values from Table 2 and Table 3)
13Beware bend leg elongation
14Accounting for Elongation
- Radius most important factor to elongation
- Bend leg elongation only happens at clearance
less than the thickness - Step height and step distance do not alter bend
allowances significantly
15Conclusion
- Established trends for effect of die clearance,
die radius, step height and distance - Need for research with other materials
- This research took 1000 hours
- Perhaps small samples of other materials could be
tested to show trends
16References
- 1 A.G. Gardiner, The spring back of metals,
Trans. ASME, J. Appl.Mech. 79 (1957) 19. - 2 W. Johnson, T.X. Yu, Springback after the
biaxial elastic-plastic pure bending of a
rectangular plate I, Int. J. Mech. Sci. 23 (10)
(1981)619630. - 3 W. Johnson, T.X. Yu, On the range of
applicability of results forthe springback of an
elastic/perfectly plastic rectangular plate
aftersubjecting it to biaxial pure bending II,
Int. J. Mech. Sci. 23 (10)(1981) 631637. - 4 R.A. Ayres, SHAPESET a process to reduce
sidewall curl springbackin high-strength steel
rails, J. Appl. Metalworking 3 (2) (1984)127172. - 5 C. Wang, G. Kinzel, T. Altan, Mathematical
modeling of planestrainbending of sheet and
plate, J. Mater. Proc. Tech. 39 (3/4)(1993)
279304. - 6 Y.K.D.V. Prasad, S. Somasundaram,
Mathematical model for bendallowance calculation
in automated sheet-metal bending, J. Mater. - Proc. Tech. 39 (3/4) (1993) 337356.7 D.K. Leu,
A simplified approach for evaluating bendability
andspringback in plastic bending of anisotropic
sheet metals, J. Mater.Proc. Tech. 66 (1997)
917. - 8 J.C. Nagtegaal, L.M. Taylor, Comparison of
implicit and explicitfinite element methods for
analysis of sheet forming problems FESimulationof
3-D Sheet Metal Forming Processes in
AutomotiveIndustry, 894, VDI, Berichte, 1991, pp.
705725. - 9 A.P. Karafillis, M.C. Boyce, Tooling design
in sheet metal formingusing springback
calculations, J. Mech. Sci. 34 (1992) 113131. - 10 H.B. Sim, M.C. Boyce, Finite element
analyses of real time stabilitycontrol in sheet
metal forming processes, ASME J. Eng.
Mater.Technol. 114 (1992) 80188. - 11 M.J. Finn, P.C. Galbraith, L. Wu, J.O.
Hallquist, L. Lum, T.L. Lin,Use of a Coupled
ExplicitImplicit Solver for Calculating
SpringBack in Automotive Body Panels, Livermore
Software TechnologyCorporation, Livermore, CA,
1992. - 12 L. Wu, C. Du amd, L. Zhang, Iterative FEM
Die surface designto compensate for springback in
sheetmetal stampings, inProceedings of NUMIFORM
95, Ithaca, NY, 1995, pp. 637641.13 A.P.
Karafillis, M.C. Boyce, Tooling and binder design
for sheetmetal forming processes compensating
springback error, Int. J. Mach.Tools Manuf. 36
(4) (1996) 503526. - 14 M. Sunseri, J. Cao, A.P. Karafillis, M.C.
Boyce, Accommodation ofspringback error in
channel forming using active binder force
controlnumerical simulations and experiments,
ASME J. Eng. Mater.Technol. 118 (1996) 426434. - 15 Y. Ming, K. Manabe, H. Nishimura,
Development of an intelligenttool system for
flexible L-bending process of metal sheets,
SmartMater. Struct. 7 (4) (1998) 530536. - 16 I.N. Chou, C. Hung, Finite element analysis
and optimization onspringback reduction, Int. J.
Mach. Tools Manuf. 39 (3) (1999)517536. - 17 M. Samuel, Experimental and numerical
prediction of springbackand side wall curl in
U-bending of anisotropic sheet metals, J.
Mater.Proc. Tech 105 (3) (2000) 382393. - 18 N. Narkeeran, M. Lovell, Predicting
springback in sheet metal formingan explicit to
implicit sequential solution procedure, Finite
Elements,Anal. Des. 33 (1) (1999) 2942. - 19 Baumeister, Avallone, Marks Standard
Handbook For MechanicalEngineers, 8th ed.,
McGraw-Hill, 1979. - 20 G. Sachs, Principles and Methods of Sheet
Metal Fabricating, 2nded., Reinhold Publishing
Corporation, New York, 1966.