More Fun With Regression - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

More Fun With Regression

Description:

More Fun With Regression. PO 777. Prof. Steen . regress rephouse reppres. rephouse | Coef. ... yi = a b1x1,i b2x2,i ei. Pitfalls. Omitting explanatory variables ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 28
Provided by: bos7
Category:
Tags: fun | more | regression | steen

less

Transcript and Presenter's Notes

Title: More Fun With Regression


1
More Fun With Regression
  • PO 777
  • Prof. Steen

2
. regress rephouse reppres ----------------------
--------------------------------------------------
------ rephouse Coef. Std. Err.
t Pgtt 95 Conf. Interval -------------
--------------------------------------------------
-------------- reppres 1.316001
.0249125 52.82 0.000 1.267142
1.36486 _cons -.0898492 .0111576
-8.05 0.000 -.1117316 -.0679668
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
Multivariate Regression
yi a b1x1,i b2x2,i ei
9
Pitfalls
  • Omitting explanatory variables
  • Including irrelevant explanatory variables
  • Measurement error in explanatory variables
  • Non-linear relationships
  • Multicollinearity
  • Outliers

10
Irrelevant RHS variables
  • True yi bxi ei
  • Model yi b?x1i b?x2i ei

11
Measurement Error in X
  • True yi bxi ei
  • X' X d
  • E(d)0, var(di)sd2
  • cov(X,d)0
  • cov(e,d)0

12
Multicollinearity
  • . reg genpct lnrec lndis pctlast
  • Source SS df MS
    Number of obs 818
  • -------------------------------------------
    F( 3, 814) 85.10
  • Model 37724.8101 3 12574.9367
    Prob gt F 0.0000
  • Residual 120286.727 814 147.772391
    R-squared 0.2387
  • -------------------------------------------
    Adj R-squared 0.2359
  • Total 158011.537 817 193.404574
    Root MSE 12.156
  • --------------------------------------------------
    ----------------------------
  • genpct Coef. Std. Err. t
    Pgtt 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • lnrec -1.573258 6.443222 -0.24
    0.807 -14.22055 11.07403
  • lndis 4.51684 6.419302 0.70
    0.482 -8.083495 17.11718
  • pctlast -.0438444 .0094697 -4.63
    0.000 -.0624323 -.0252564
  • _cons 13.71467 2.798213 4.90
    0.000 8.222105 19.20723
  • --------------------------------------------------
    ----------------------------

13
r.9995
14
Diagnosing Multicollinearity
  • Auxiliary R-squared r-squared for regression of
    each X on all other X's
  • Tolerance 1-Auxiliary r-squared
  • Variance inflation factor 1/Tolerance

15
Treating Multicollinearity
  • Drop variables with worst case of MC
  • Create an index out of the co-linear variables
  • Do nothing and explain the situation to the
    reader

16
Non-Linear Relationships between X and Y
17
Non-Linear Relationships between X and Y
18
Non-Linear Relationships between X and Y
yi a b1x1,i b2x1,i2 ei
19
Non-Linear Relationships between X and Y
20
Non-Linear Relationships between X and Y
21
Non-Linear Relationships between X and Y
X1new ln(X1 k)/k
22
Non-Linear Relationships between X and Y
23
Non-Linear RelationshipsLogarithmic
Transformation
24
Non-Linear Relationships between X and Y
25
Outliers!
26
(No Transcript)
27
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com