MUSCLE WP 5 ETeam on Visual Saliency - PowerPoint PPT Presentation

1 / 7
About This Presentation
Title:

MUSCLE WP 5 ETeam on Visual Saliency

Description:

Feature extraction from spatiotemporal data. Fusion & saliency generation ... Use spatiotemporal VA for efficient global classification of videos ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 8
Provided by: pmik
Category:

less

Transcript and Presenter's Notes

Title: MUSCLE WP 5 ETeam on Visual Saliency


1
  • MUSCLE  WP 5  E-Team on Visual Saliency
  •  Participant   ICCS-NTUA  
  • Researchers
  • P. Maragos, I. Kokkinos, K. Rapantzikos, A.
    Sofou  Research Directions
  • Scale-space feature detection  with Applications
    to object representation detection.
  • Spatio-temporal saliency detection in video
    streams.
  • Salient feature extraction and region-growing
    segmentation.

2
Scale-space feature detection  with Applications
to Object representation detection - I.
  • Extract edge ridge lines in a scale-invariant
    manner
  • Use simple descriptors to represent the extracted
    curves

3
Scale-space feature detection  with Applications
to Object representation detection -II.
  • Use the extracted descriptors as a concise
    representation of the image.
  • Explore the potential of using line and ridge
    features as the input to an object detection
    system.
  • Compare combine with blob-like features.
  • Evaluate on object detection tasks
  • Horses
  • Faces
  • Cars

4
Spatiotemporal Visual Attention I Video Analysis
  • Create video volume
  • Feature extraction from spatiotemporal data
  • Fusion saliency generation

5
Spatiotemporal Visual Attention II
Classification segmentation
  • Use spatiotemporal VA for efficient global
    classification of videos
  • Claim features extracted only from low or high
    saliency regions are more representative of the
    input video
  • Foreground/Background segmentation
  • Claim most salient regions are related to
    foreground areas of the video

6
Salient feature extraction and region-growing
segmentation I
Non- linear salient feature space
Salient feature regions extraction and region
growing segmentation result
7
Salient Feature Extraction and
Region-growing Segmentation II
  • Salient feature extraction using linear
    (Gaussian scale-spaces) and non-linear
    methodologies (morphological scale spaces, AMFM
    models, multiband Energy tracking demodulation)
  • Region-growing segmentation using salient
    features as leading marker-seeds.
Write a Comment
User Comments (0)
About PowerShow.com