An Overcomplete Sparse Code to explain visual cortical nonlinearities

1 / 9
About This Presentation
Title:

An Overcomplete Sparse Code to explain visual cortical nonlinearities

Description:

The algorithm (quadratic sparse coding) 1. Using gray ... L problem spatiotemporal. 11.5.2005. Mark V. Albert. Embedded L problem. 11.5.2005. Mark V. Albert ... –

Number of Views:68
Avg rating:3.0/5.0
Slides: 10
Provided by: markva2
Category:

less

Transcript and Presenter's Notes

Title: An Overcomplete Sparse Code to explain visual cortical nonlinearities


1
An Overcomplete Sparse Code to explain visual
cortical nonlinearities
2
Common algorithms limitations
PCA
ICA
ideal algorithm
Non-Orthogonal
Overcomplete
3
ICA (linear)
Natural images
Ls
4
The algorithm (quadratic sparse coding)
1. Using gray-scale natural images
2. Extract patches (8x8, 64 dim.)
3. Compute pairwise products (2080)
4. Dimensionality reduction (256)
5. whiten the data
6. Sparse code (or use ICA)
5
L problem quad. sparse forms
6
L problem spatiotemporal
7
Embedded L problem
8
Summary
Overcomplete, sparse codes reveal more relevant
structure
Even the simplest spatial and temporal
transformations necessitate such codes
Implications for relating natural images/video
encoding to early visual cortical cell responses.
9
Acknowledgements
  • David Field
  • Damon Chandler
  • Daniel Graham

Funding NSF nonlinear systems IGERT
Computation Cornell Center for Applied
Math, National Geospatial-Intelligence Agency
Write a Comment
User Comments (0)
About PowerShow.com