Problem set 2 - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Problem set 2

Description:

Problem set 2. By Thomas and Lars. PS: Choose the environment, ... the worker completely, and in simular cases with monitoring you achive pareto optimality. ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 30
Provided by: lars50
Category:
Tags: problem | set | simular

less

Transcript and Presenter's Notes

Title: Problem set 2


1
Problem set 2
Problem set 2
Exercise 1
1/29
  • By Thomas and Lars
  • PS Choose the environment, choose many pages per
    sheet.

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
2
1. The putting out system
Problem set 2
Exercise 1
2/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
3
(a) Show that in equilibrium e q ½
Problem set 2
Exercise 1
3/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
4
Because of the decision making structure the
putter-out maximizes surplus given the home
workers optimal response function.
Problem set 2
Exercise 1
4/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
5
Home workers maximation problem
Problem set 2
Exercise 1
5/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
6
The first order condition
Problem set 2
Exercise 1
6/29
  • This is also the optimal response function

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
7
The putter outs maximation problem
Problem set 2
Exercise 1
7/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
8
First order condition
Problem set 2
Exercise 1
8/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
9
(b) Draw iso-profit and iso-utility curves,
illustrate the equilibrium.
Problem set 2
Exercise 1
9/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
10
Problem set 2
Exercise 1
10/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
11
Problem set 2
Exercise 1
11/29
(c) Explain the intuition behind U-shaped
iso-utility curves.
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
12
Problem set 2
Exercise 1
12/29
  • If income and effort are separated in the utility
    function, then we would have normal shaped
    iso-utility curves with prefered direction to the
    north-west.
  • But when the home worker increases his effort
    marginally, he effects his income as well. Thus,
    we do not have a single negative effect on his
    utility through this increase in effort, but also
    a positive effect through the income increase.

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
13
(d) For which values of q is a
pareto-improvement possible, if e is set to 1?
Problem set 2
Exercise 1
13/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
14
Problem set 2
Exercise 1
14/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
15
Problem set 2
Exercise 1
15/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
16
When e is set to 1 we have that
Problem set 2
Exercise 1
16/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
17
Pareto improvements are possible when
Problem set 2
Exercise 1
17/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
18
Problem set 2
Exercise 1
18/29
e) Why isnt such (e,q)-combinations incentive
compatible?
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
19
The nature of the game makes any other values
impossible.
Problem set 2
Exercise 1
19/29
  • We assume complete and perfect information in
    this one-shot game, given standard rationality
    assumptions.
  • The home worker maximizes his utility, and then
    the putter out maximizes his surplus given the
    workers optimal response. Thus, none of the
    players have an incentive to change his optimal
    strategy.

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
20
Problem set 2
Exercise 1
20/29
  • If we had changed the nature of the game, by for
    example cooperation, then we could have achieved
    pareto improvements which were incentive
    compatible.

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
21
2. Contingent renewal
Problem set 2
Exercise 2
21/29
The probability for contingent renewal
p A ae,
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
22
Problem set 2
Exercise 2
22/29
(a) Derive the optimal effort of the worker as
a function of w. (b) Show that e aR /
(1r-p), where R r (u (w,e) / r Vu) is the
unemployment rent.
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
23
Problem set 2
Exercise 2
23/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
24
Problem set 2
Exercise 2
24/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
25
Problem set 2
Exercise 2
25/29
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
26
Problem set 2
Exercise 2
26/29
where
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
27
Problem set 2
Exercise 2
27/29
(c) Show that de /dw a / (1r-p)
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
28
Problem set 2
Exercise 2
28/29
d) Compare the equilibrium with the
equilibrium in the putting-out system.
Laget av Thomas Aanensen og Lars Solberg
17/09-2007
29
Comparing the two cases
Problem set 2
Exercise 2
29/29
  • The overall structure in these two cases has much
    in common, and that is why we have these
    similarities.
  • The employer/putter out can not monitor the
    worker completely, and in simular cases with
    monitoring you achive pareto optimality.
  • The worker decides his own effort in both cases,
    and he is in a way superior when choosing his
    strategy. If the employer/putter out could have
    dictated him to choose a higher effort, we would
    have achived a pareto optimal situation.

Laget av Thomas Aanensen og Lars Solberg
17/09-2007
Write a Comment
User Comments (0)
About PowerShow.com