Title: MGA Concepts and Grid Calculations
1MGA Concepts andGrid Calculations
2Objectives
- Apply fundamental knowledge of MGA to grid
calculations - Calculate and apply grid convergence.
- Determine grid coordinates of a point given known
coordinates of a start point and grid bearing and
spheroidal distance from that start point. - Determine grid bearing and spheroidal distance
between known points
3Overview of Coordinates
- There are three aspects to Understanding and
Using Coordinates - Datum
- Projections
- Observations
4Datum, Projections and Observations
- A datum is the underlying basis for coordinate
systems - Positions on the datum can be projected to
create grid coordinates - Observations (bearings and distances) in the
real world need to be corrected to conform to the
datum and projection
5Why Coordinates?
- The use of a uniform system of coordinates allows
spatial information from various sources to be
integrated - Increasing requirement for coordination in all
types of surveys - At the heart of Australian Spatial Data
Infrastructure (ASDI), GIS and GPS - Required in International Standards
6Approximation - an Important Underlying Concept
- All exact science is dominated by the idea of
approximation Bertrand Russel - Coordinates are simply a way to approximate the
real world using a mathematical model - Some models are better approximations than others
7Understanding and Using Datums
8Ellipsoids and Geoids
9AGD - The Old Datum
- Terrestrial Observations
- Systematic Errors
- Constrained by Doppler (transformed)
- Distribution
- Homogeneity
- Location of Marks
10GDA - International Basis
- International Terrestrial Reference Frame (ITRF)
is a particular realization of an idealized
reference system... - observation at certain sites and with certain
factors in the processing produces... - set of positions and velocities of those sites at
a certain time. - reference ellipsoid - GRS80
11GDA and the ITRF
Link to ITRF by GPS observations at IGS sites and
the Australian National Network (500km). GDAs
link to ITRF makes it compatible with WGS84
12Queensland GDA94 Data Set
13Magnitude of Shift
- All coordinates
- apparently shift in
- excess of 200m.
14Distortions between Transformed AGD84 and GDA94
Western Qld
Central Coast
15Types of Coordinates Systems
Semi-minor axis (b)
Semi-major axis (a)
16Projection Coordinates onGDA and AGD
Map Grid Australia on GDA
NMGA
EMGA
17Terminology
Universal Transverse Mercator
Std. 6 Degree Zones, with the same Central
Meridians etc.
18Understanding and Using Projections
19UTM Projection
- 6? Degree zones
- Longitude of Zone 1 3? east longitude
- 0.9996 Scale Factor on Central Meridian
- 500 000 m false easting
- 10 000 000 m false northing
- 1/2 degree overlap
Ref Chapter 1. GDA Technical Manual ICSM Web
Site
20AMG/MGA - UTM Projection
21AMG/MGA - UTM Projection
22AMG - Redfearns Approx (See Study Book)
ER, NR Rectangular Coords Note meridian
distance (m) NR ET, NT Transverse Mercator
Coords E, N AMG Coords without false
origin E, N AMG Coordinates
23GDA94 to MGA94(Redfearns Formulae)
- Datum Parameters
- Semi-Major Axis (a)
- Inverse Flattening (f)
- Projection Parameters
- Longitude of Central Meridian (Zone)
- Scale Factor on Central Meridian
- False Easting, False Northing
- Input Data
- Latitude, Longitude Height
- Computed Parameters
- Radius of Curvature
- Meridian Distance
- Foot-Point Latitude
- Function (semi-major axis, inverse flattening and
latitude) - Output
- Easting, Northing, Zone, Grid Conv. , Point Scale
Factor
Ref Chapter 5. GDA Technical Manual ICSM Web
Site
24GDA94 - MGA94 (Example)
Ref Redfearn.xls GDA Technical Manual ICSM
Web Site
25Geographic Coordinates Converted in Overlapping
Zones.
26MGA94 to GDA94(Redfearns Formulae)
- Datum Parameters
- Semi-Major Axis (a)
- Inverse Flattening (f)
- Projection Parameters
- Longitude of Central Meridian (Zone)
- Scale Factor on Central Meridian
- False Easting, False Northing
- Input Data
- Easting, Northing, Zone Height
- Computed Parameters
- Foot-Point Latitude
- Radius of Curvature
- Meridian Distance
- Function (semi-major axis, inverse flattening and
latitude) - Output
- Lat, Long, Grid Conv, Point SF
Ref Chapter 5. GDA Technical Manual ICSM Web
Site
27MGA94 - GDA94 (Example)
Ref Redfearn.xls GDA Technical Manual ICSM
Web Site
28Scale Convergence
- Line Scale Factor (K)
- L/s (plane / ellipsoidal)
- ? S/s (grid / ellipsoidal)
- Grid Bearing (?)
- Plane Bearing (q) Arc-to-Chord Correction
(?) - Azimuth (a) Grid Convergence (?)
Ref Glossary of Terms. GDA Technical Manual
ICSM Web Site
29Grid Bearing Ellipsoidal Dist from MGA94
Coordinates
- Grid Bearing function (plane bearing
arc-to-chord correction ) - Arc-to-chord correction function ( eastings,
northings and approx mean latitude) - Ellipsoidal Distance function (plane distance
line scale factor ) - Line Scale Factor function ( CM scale factor,
eastings approx. mean latitude)
Ref Chapter 6. GDA Technical Manual ICSM Web
Site
30Grid Bearing Ellipsoidal Dist from MGA94
Coordinates (Example)
Grid North
L 54992.279
S ? L
A
s 54972.271 K 1.000 363 97
Plane Bearing (?) Plane Distance (L)
Grid Bearing (?AB )
?AB 125?17?21.18?
?A -20.67? ?AB 125?17?41.86? ?B 19.18?
?BA 306?52?05.37?
B
Grid Distance (S)
Grid Bearing (?BA )
Ref Test Data. GDA Technical Manual ICSM Web
Site
31Grid Calculations inOverlapping Zones
ZONE 54
ZONE 55
- Plane Distance
- Ellipsoid Distance
- Line Scale Factor
- Arc-to-Chord (A)
- Arc-to-Chord (B)
- Plane Bearing
- Grid Bearing (AB)
- Grid Bearing (BA)
- Grid Convergence
- 54992.279
- 54972.271
- 1.00036397
- -20.67?
- 19.47?
- 125? 17? 21.18?
- 125 ? 17? 41.86?
- 305 ? 17? 01.72?
- -1 ? 52? 43.22?
55003.307 54972.271 1.00042107 23.94? -25.19? 128
? 58? 08.37? 128? 57? 44.44? 308 ? 58? 33.56? 1
? 47? 19.36?
Ref GridCalc.xls GDA Technical Manual ICSM Web
Site
32Plane Coordinates
33Plane Coordinates
34Plane Coordinates
35Summary
- We investigated methods to
- Calculate and apply grid convergence.
- Determine grid coordinates of a point given known
coordinates of a start point and grid bearing and
spheroidal distance from that start point. - Determine grid bearing and spheroidal distance
between known points
36Self Study
- Read Module 6 (first part)
37Review Questions