Last time: ProblemSolving - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Last time: ProblemSolving

Description:

single state: accessible and deterministic environment ... primeiro o n que aparentemente o mais pr ximo do objetivo, de acordo com h(n) ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 38
Provided by: paol69
Category:

less

Transcript and Presenter's Notes

Title: Last time: ProblemSolving


1
Last time Problem-Solving
  • Problem solving
  • Goal formulation
  • Problem formulation (states, operators)
  • Search for solution
  • Problem formulation
  • Initial state
  • ?
  • ?
  • ?
  • Problem types
  • single state accessible and deterministic
    environment
  • multiple state ?
  • contingency ?
  • exploration ?

2
Last time Problem-Solving
  • Problem solving
  • Goal formulation
  • Problem formulation (states, operators)
  • Search for solution
  • Problem formulation
  • Initial state
  • Operators
  • Goal test
  • Path cost
  • Problem types
  • single state accessible and deterministic
    environment
  • multiple state ?
  • contingency ?
  • exploration ?

3
Last time Problem-Solving
  • Problem solving
  • Goal formulation
  • Problem formulation (states, operators)
  • Search for solution
  • Problem formulation
  • Initial state
  • Operators
  • Goal test
  • Path cost
  • Problem types
  • single state accessible and deterministic
    environment
  • multiple state inaccessible and deterministic
    environment
  • contingency inaccessible and nondeterministic
    environment
  • exploration unknown state-space

4
Last time Finding a solution
Solution is ??? Basic idea offline, systematic
exploration of simulated state-space by
generating successors of explored states
(expanding)
  • Function General-Search(problem, strategy)
    returns a solution, or failure
  • initialize the search tree using the initial
    state problem
  • loop do
  • if there are no candidates for expansion then
    return failure
  • choose a leaf node for expansion according to
    strategy
  • if the node contains a goal state then return
    the corresponding solution
  • else expand the node and add resulting nodes to
    the search tree
  • end

5
Last time Finding a solution
Solution is a sequence of operators that bring
you from current state to the goal state. Basic
idea offline, systematic exploration of
simulated state-space by generating successors of
explored states (expanding).
  • Function General-Search(problem, strategy)
    returns a solution, or failure
  • initialize the search tree using the initial
    state problem
  • loop do
  • if there are no candidates for expansion then
    return failure
  • choose a leaf node for expansion according to
    strategy
  • if the node contains a goal state then return
    the corresponding solution
  • else expand the node and add resulting nodes to
    the search tree
  • end

Strategy The search strategy is determined by ???
6
Last time Finding a solution
Solution is a sequence of operators that bring
you from current state to the goal state Basic
idea offline, systematic exploration of
simulated state-space by generating successors of
explored states (expanding)
  • Function General-Search(problem, strategy)
    returns a solution, or failure
  • initialize the search tree using the initial
    state problem
  • loop do
  • if there are no candidates for expansion then
    return failure
  • choose a leaf node for expansion according to
    strategy
  • if the node contains a goal state then return
    the corresponding solution
  • else expand the node and add resulting nodes to
    the search tree
  • end

Strategy The search strategy is determined by
the order in which the nodes are expanded.
7
Last time search strategies
  • Uninformed Use only information available in the
    problem formulation
  • Breadth-first
  • Uniform-cost
  • Depth-first
  • Depth-limited
  • Iterative deepening
  • Informed Use heuristics to guide the search
  • Best first
  • A

8
Evaluation of search strategies
  • Search algorithms are commonly evaluated
    according to the following four criteria
  • Completeness does it always find a solution if
    one exists?
  • Time complexity how long does it take as a
    function of number of nodes?
  • Space complexity how much memory does it
    require?
  • Optimality does it guarantee the least-cost
    solution?
  • Time and space complexity are measured in terms
    of
  • b max branching factor of the search tree
  • d depth of the least-cost solution
  • m max depth of the search tree (may be
    infinity)

9
Last time uninformed search strategies
  • Uninformed search
  • Use only information available in the problem
    formulation
  • Breadth-first
  • Uniform-cost
  • Depth-first
  • Depth-limited
  • Iterative deepening

10
Um algoritmo robusto e limpo

Function UniformCost-Search(problem, Queuing-Fn)
returns a solution, or failure open ?
make-queue(make-node(initial-stateproblem)) clo
sed ? empty loop do if open is empty then
return failure currnode ? Remove-Front(open) i
f Goal-Testproblem applied to State(currnode)
then return currnode children ?
Expand(currnode, Operatorsproblem) while
children not empty see next slide
end closed ? Insert(closed,
currnode) open ? Sort-By-PathCost(open) end
11
Um algoritmo robusto e limpo

see previous slide children ?
Expand(currnode, Operatorsproblem) while
children not empty child ? Remove-Front(childre
n) if no node in open or closed has childs
state open ? Queuing-Fn(open, child) else
if there exists node in open that has childs
state if PathCost(child) lt PathCost(node)
open ? Delete-Node(open, node) open ?
Queuing-Fn(open, child) else if there exists
node in closed that has childs state if
PathCost(child) lt PathCost(node) closed ?
Delete-Node(closed, node) open ?
Queuing-Fn(open, child) end see previous
slide
12
Informed search (busca com informação)
  • Informed search
  • Uso de heurísticas para guiar a busca
  • Best first
  • A
  • Heuristica
  • Hill-climbing
  • Simulated annealing

13
Best-first search
  • Idéia
  • usar uma função de avaliação para cada nó
    estimação de desejabilidade
  • Expandir nó não expandido mais desejável.
  • Implementação
  • QueueingFn insere successores em ordem
    decrescente de desejabilidade
  • Casos especiais
  • greedy search
  • A search

14
Romania com custo de cada passo em km
15
Greedy search (gula é um pecado capital?)
  • Função de estimação
  • h(n) estimação do custo de nó ao objetivo
    (heuristica)
  • Por exemplo
  • hSLD(n) distância em linha reta do nó a
    Bucharest
  • Greedy search expande primeiro o nó que
    aparentemente é o mais próximo do objetivo, de
    acordo com h(n).

16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
Propriedades do Greedy Search
  • Completo?
  • Tempo?
  • Memória?
  • Ótimo?

21
Properties of Greedy Search
  • Completo? Não pode ficar parado em loops
  • e.g., Iasi gt Neamt gt Iasi gt Neamt gt
  • Completo espaço finito com teste de estado
    repetido.
  • Tempo? O(bm) mas uma boa heurística pode dar
  • uma melhora dramática
  • Memória? O(bm) mantém todos os nós em memória
  • Ótimo? Não.

22
A search
  • Idéia evitar expandir caminhos que já são caros
  • função de avaliação f(n) g(n) h(n) com
  • g(n) custo do caminho para atingir o nó
  • h(n) custo estimado ao objetivo, do nó
  • f(n) custo estimado total do caminho pelo nó
    ao objetivo
  • A search usa uma heurística admissível, isto é,
  • h(n) ? h(n) onde h(n) é o custo verdadeiro a
    partir de n.
  • Por exemplo hSLD(n) nunca sobre-estima
    distância real da estrada.
  • Teorema A search é ótimo

23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
Properties of A
  • Complete?
  • Time?
  • Space?
  • Optimal?

30
Properties of A
  • Complete? Yes, unless infinitely many nodes with
    f ? f(G)
  • Time? Exponential in (relative error in h) x
    (length of solution)
  • Space? Keeps all nodes in memory
  • Optimal? Yes cannot expand fi1 until fi is
    finished

31
Prova do lema caminho máximo
32
Otimalidade de A (prova mais usual)
33
Otimalidade de A (prova standard)
  • Suponha que um objetivo G sub-ótimo2 foi gerado e
    está na fila. Seja n um nó não expandido num
    caminho mais curto para um objetivo G ótimo.

34
Heurísticas admissíveis
35
Heurísticas admissíveis
36
Problema relaxado
  • Heurísticas admissíveis podem ser derivadas do
    custo exato de uma solução para uma versão
    relaxada do problema.
  • Se as regras do 8-puzzle forem relaxadas de
    maneira que uma casa possa mover a qualquer
    lugar, então h1(n) produz a solução mais curta.
  • Se as regras são relaxadas de modo que uma casa
    possa se mover a qualquer posição adjacente,
    então h2(n) produz a solução mais curta.

37
Next time
  • Iterative improvement
  • Hill climbing
  • Simulated annealing
Write a Comment
User Comments (0)
About PowerShow.com